gitbib | All tags:

Roads towards fault-tolerant universal quantum computation

2017-fault-tolerant-computation

Earl T. Campbell; Barbara M. Terhal; Christophe Vuillot

2017-09-13 (online)

Nature (Nature). 549, 7671, 172-179. doi:10.1038/nature23460

Description

Superconducting qubits 2013-superconducting-qubit-outlook (ref. 3).

Gottesman-Knill theorem says you need T in addition to S, H, and CNOT or you get no quantum 1997-gottesman-thesis (ref. 9) (ref. 10).

Trivial codes can't have transversal implementations of all gates for universal compuation (ref. 11) (ref. 12).

Surface code first as a topological memory 2002-surface-code (ref. 13). Logical qubit can be two holes in a code sheet (ref. 17) or two pairs of latice defects or twists (ref. 18) (ref. 19).

NumEntryWhy
13 2002-surface-code "Seminal paper on using the surface code as a quantum memory"
3 2013-superconducting-qubit-outlook
9 1997-gottesman-thesis

Quantum software

2017-insight

Leonie Mueck

2017-09-13 (online)

Nature (Nature). 549, 7671, 171-171. doi:10.1038/549171a

Description

Nature ran a featurette where everyone mused about quantum computing and how to make it useful. Includes 2017-fault-tolerant-computation, 2017-quantum-programming-language,

Programming languages and compiler design for realistic quantum hardware

2017-quantum-programming-language

Frederic T. Chong; Diana Franklin; Margaret Martonosi

2017-09-13 (online)

Nature (Nature). 549, 7671, 180-187. doi:10.1038/nature23459

Description

Quantum/classical co-processor model described by 2015-quipper (ref. 19).

NumEntryWhy
18 2016-h2-vqe "This paper is a good example of the emerging importance of classical-quantum co-processing"
19 2015-quipper "This paper offers another perspective on quantum programming language design issues."
47 2016-quil "QUIL - A new language with an emphasis on the classical-quantum interface. Open source."

First quantum computers need smart software

2017-rigetti-quantum-software

Will Zeng; Blake Johnson; Robert Smith; Nick Rubin; Matt Reagor; Colm Ryan; Chad Rigetti

2017-09-13 (online)

Nature (Nature). 549, 7671, 149-151. doi:10.1038/549149a

Description

A comment that argues for good quantum software.

Charge- and Flux-Insensitive Tunable Superconducting Qubit

2017-tunable

Eyob A. Sete; Matthew J. Reagor; Nicolas Didier; Chad T. Rigetti

2017-08-07 (online)

Physical Review Applied (Physical Review Applied). 8, 2, doi:10.1103/PhysRevApplied.8.024004

Description

Improve fluxonimum (ref. 10) (ref. 11) (ref. 12) (ref. 13) (ref. 14) (ref. 15) with "sweet spots". I think this is just simulations of how it would behave w.r.t noise though.

Static qubit-qubit couplings with 2q-gates in hundreds of nanoseconds, 100us coherence, and fidelity of 99.1% (ref. 1) (ref. 2) (ref. 3).

Frequency tinable qubits: 20us coherence, 50ns 2q-gates and 99.44% fidelity (ref. 4) (ref. 5). Fluctuations from flux noise ruin coherence (ref. 6) (ref. 7) (ref. 8). Also not anharmonic enough means leaks to higher levels (ref. 9).

Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

2017-multi-qubit

M. Reagor; C. B. Osborn; N. Tezak; A. Staley; G. Prawiroatmodjo; M. Scheer; N. Alidoust; E. A. Sete; N. Didier; M. P. da Silva; E. Acala; J. Angeles; A. Bestwick; M. Block; B. Bloom; A. Bradley; C. Bui; S. Caldwell; L. Capelluto; R. Chilcott; J. Cordova; G. Crossman; M. Curtis; S. Deshpande; T. El Bouayadi; D. Girshovich; S. Hong; A. Hudson; P. Karalekas; K. Kuang; M. Lenihan; R. Manenti; T. Manning; J. Marshall; Y. Mohan; W. O'Brien; J. Otterbach; A. Papageorge; J. -P. Paquette; M. Pelstring; A. Polloreno; V. Rawat; C. A. Ryan; R. Renzas; N. Rubin; D. Russell; M. Rust; D. Scarabelli; M. Selvanayagam; R. Sinclair; R. Smith; M. Suska; T. -W. To; M. Vahidpour; N. Vodrahalli; T. Whyland; K. Yadav; W. Zeng; C. T. Rigetti

2017-06-20 (online)

arxiv:1706.06570

Description

Eight qubits in a ring, alternating fixed and tunable. Do 2q gates.

A functional architecture for scalable quantum computing

2016-scalable

Eyob A. Sete; William J. Zeng; Chad T. Rigetti

2016-10-01 (print)

2016 IEEE International Conference on Rebooting Computing (ICRC) (2016 IEEE International Conference on Rebooting Computing (ICRC)). doi:10.1109/ICRC.2016.7738703

Description

Quantum simulation algorithsm (ref. 1) (ref. 2) (ref. 3).

Quantum machine learning (ref. 4)

Quantum error correction benchmarks (ref. 5) (ref. 6) (ref. 7).

Variational quantum eigensolvers (ref. 8) (ref. 9) (ref. 10).

Correlated material simulations (ref. 11).

Approximate optimization (ref. 12).

For the problems of catalysts (ref. 13) and high temperature superconductivity (ref. 9) show promise.

Cryo operation and superconducting materials means no sissipation preserving quantum coherance.

Transmon qubits have large coherence time (ref. 14). Fluxonium qubits have wide frequency tunability and strong nonlinearity (ref. 15). This means fluxonium are better for two-qubit gates.

Quantum limited amplifiers (ref. 16) (ref. 17) (ref. 18): Josephson parametric amplifier, Josephson bifurcation amplifier, and Josephson parametric converter. Non-linear resonators.

Can do rotations Rx and Ry on any qubit. Can do SWAP between any transmon and fluxonium. Can do CPhase between any fluxonium and half the transmons. All gates can be made with these primitives (ref. 19).

Introduce "TQF" estimate of width * depth of quantum circuit you can run. (ref. 1) runs electronic structure for very small molecules.

Transmon can be "data" for surface code error correction (ref. 24) (ref. 25) and fluxonium as ancillas for parity measurement.

Quantum-Enhanced Machine Learning

2016-quantum-ml

Vedran Dunjko; Jacob M. Taylor; Hans J. Briegel

2016-09-20 (online)

Physical Review Letters (Phys. Rev. Lett.). 117, 13, doi:10.1103/PhysRevLett.117.130501

A Practical Quantum Instruction Set Architecture

2016-quil

Robert S. Smith; Michael J. Curtis; William J. Zeng

2016-08-11 (online)

arxiv:1608.03355

Scalable Quantum Simulation of Molecular Energies

2016-h2-vqe

P. J. J. O’Malley; R. Babbush; I. D. Kivlichan; J. Romero; J. R. McClean; R. Barends; J. Kelly; P. Roushan; A. Tranter; N. Ding; B. Campbell; Y. Chen; Z. Chen; B. Chiaro; A. Dunsworth; A. G. Fowler; E. Jeffrey; E. Lucero; A. Megrant; J. Y. Mutus; M. Neeley; C. Neill; C. Quintana; D. Sank; A. Vainsencher; J. Wenner; T. C. White; P. V. Coveney; P. J. Love; H. Neven; A. Aspuru-Guzik; J. M. Martinis

2016-07-18 (online)

Physical Review X (Physical Review X). 6, 3, doi:10.1103/PhysRevX.6.031007

Description

Solves molecular hydrogen with variational quantum eigensolver (which is hybrid quantum - classical) and compares to trotterization and quantum phase estimation. The VQE is better.

Programming the quantum future

2015-quipper

Benoît Valiron; Neil J. Ross; Peter Selinger; D. Scott Alexander; Jonathan M. Smith

2015-07-23 (print)

Communications of the ACM (Commun. ACM). 58, 8, 52-61. doi:10.1145/2699415

Description

Quantum programming language implemented inside Haskell. Invisions quantum co-processor.

Superconducting Circuits for Quantum Information: An Outlook

2013-superconducting-qubit-outlook

M. H. Devoret; R. J. Schoelkopf

2013-03-07 (online) – 2013-03-08 (print)

Science (Science). 339, 6124, 1169-1174. doi:10.1126/science.1231930

Topological quantum memory

2002-surface-code

Eric Dennis; Alexei Kitaev; Andrew Landahl; John Preskill

2002-09-01 (print)

Journal of Mathematical Physics (J. Math. Phys.). 43, 9, 4452-4505. doi:10.1063/1.1499754

Description

Called the seminal work in surface code error correction by 2017-fault-tolerant-computation, this long article seems to evaluate the details of the surface code which were introduced in 1997-kitaev-error-correction (ref. 4) and 1997-anyons (ref. 5).

NumEntryWhy
4 1997-kitaev-error-correction
5 1997-anyons

Fault-tolerant quantum computation by anyons

1997-anyons

A. Yu. Kitaev

1997-07-09 (online)

arxiv:quant-ph/9707021

Stabilizer Codes and Quantum Error Correction

1997-gottesman-thesis

Daniel Gottesman

1997-05-28 (online)

arxiv:quant-ph/9705052

Quantum Error Correction with Imperfect Gates

1997-kitaev-error-correction

A. Yu. Kitaev

1997-01-01 (print)

Quantum Communication, Computing, and Measurement (Quantum Communication, Computing, and Measurement). 181-188. doi:10.1007/978-1-4615-5923-8_19

Measurements of Macroscopic Quantum Tunneling out of the Zero-Voltage State of a Current-Biased Josephson Junction

1985-macroscopic-quantum-tunneling

Michel H. Devoret; John M. Martinis; John Clarke

1985-10-28 (online)

Physical Review Letters (Phys. Rev. Lett.). 55, 18, 1908-1911. doi:10.1103/PhysRevLett.55.1908