gitbib | All tags: algorithm cav cheminformatics conformational-change cross-validation deep-learning distributed-computing features forcefield kchan kv machine-learning md-algorithm md-applications md-sampling misc msm msm-applications msm-postprocessing msm-theory nav other-md-analysis perspective python qm review simulations software structure structures tica variational

Roads towards fault-tolerant universal quantum computation

2017-fault-tolerant-computation

Earl T. Campbell; Barbara M. Terhal; Christophe Vuillot

2017-09-13 (online)

Nature (Nature). 549, 7671, 172-179. doi:10.1038/nature23460

Description

Superconducting qubits 2013-superconducting-qubit-outlook (ref. 3).

Gottesman-Knill theorem says you need T in addition to S, H, and CNOT or you get no quantum 1997-gottesman-thesis (ref. 9) (ref. 10).

Trivial codes can't have transversal implementations of all gates for universal compuation (ref. 11) (ref. 12).

Surface code first as a topological memory 2002-surface-code (ref. 13). Logical qubit can be two holes in a code sheet (ref. 17) or two pairs of latice defects or twists (ref. 18) (ref. 19).

NumEntryWhy
13 2002-surface-code "Seminal paper on using the surface code as a quantum memory"
3 2013-superconducting-qubit-outlook
9 1997-gottesman-thesis

Quantum software

2017-insight

Leonie Mueck

2017-09-13 (online)

Nature (Nature). 549, 7671, 171-171. doi:10.1038/549171a

Description

Nature ran a featurette where everyone mused about quantum computing and how to make it useful. Includes 2017-fault-tolerant-computation, 2017-quantum-programming-language,

Programming languages and compiler design for realistic quantum hardware

2017-quantum-programming-language

Frederic T. Chong; Diana Franklin; Margaret Martonosi

2017-09-13 (online)

Nature (Nature). 549, 7671, 180-187. doi:10.1038/nature23459

Description

Quantum/classical co-processor model described by 2015-quipper (ref. 19).

NumEntryWhy
18 2016-h2-vqe "This paper is a good example of the emerging importance of classical-quantum co-processing"
19 2015-quipper "This paper offers another perspective on quantum programming language design issues."
47 2016-quil "QUIL - A new language with an emphasis on the classical-quantum interface. Open source."

First quantum computers need smart software

2017-rigetti-quantum-software

Will Zeng; Blake Johnson; Robert Smith; Nick Rubin; Matt Reagor; Colm Ryan; Chad Rigetti

2017-09-13 (online)

Nature (Nature). 549, 7671, 149-151. doi:10.1038/549149a

Description

A comment that argues for good quantum software.

Charge- and Flux-Insensitive Tunable Superconducting Qubit

2017-tunable

Eyob A. Sete; Matthew J. Reagor; Nicolas Didier; Chad T. Rigetti

2017-08-07 (online)

Physical Review Applied (Physical Review Applied). 8, 2, doi:10.1103/PhysRevApplied.8.024004

Description

Improve fluxonimum (ref. 10) (ref. 11) (ref. 12) (ref. 13) (ref. 14) (ref. 15) with "sweet spots". I think this is just simulations of how it would behave w.r.t noise though.

Static qubit-qubit couplings with 2q-gates in hundreds of nanoseconds, 100us coherence, and fidelity of 99.1% (ref. 1) (ref. 2) (ref. 3).

Frequency tinable qubits: 20us coherence, 50ns 2q-gates and 99.44% fidelity (ref. 4) (ref. 5). Fluctuations from flux noise ruin coherence (ref. 6) (ref. 7) (ref. 8). Also not anharmonic enough means leaks to higher levels (ref. 9).

Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

2017-multi-qubit

M. Reagor; C. B. Osborn; N. Tezak; A. Staley; G. Prawiroatmodjo; M. Scheer; N. Alidoust; E. A. Sete; N. Didier; M. P. da Silva; E. Acala; J. Angeles; A. Bestwick; M. Block; B. Bloom; A. Bradley; C. Bui; S. Caldwell; L. Capelluto; R. Chilcott; J. Cordova; G. Crossman; M. Curtis; S. Deshpande; T. El Bouayadi; D. Girshovich; S. Hong; A. Hudson; P. Karalekas; K. Kuang; M. Lenihan; R. Manenti; T. Manning; J. Marshall; Y. Mohan; W. O'Brien; J. Otterbach; A. Papageorge; J. -P. Paquette; M. Pelstring; A. Polloreno; V. Rawat; C. A. Ryan; R. Renzas; N. Rubin; D. Russell; M. Rust; D. Scarabelli; M. Selvanayagam; R. Sinclair; R. Smith; M. Suska; T. -W. To; M. Vahidpour; N. Vodrahalli; T. Whyland; K. Yadav; W. Zeng; C. T. Rigetti

2017-06-20 (online)

arxiv:1706.06570

Description

Eight qubits in a ring, alternating fixed and tunable. Do 2q gates.

Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

2017-baker-antibody-design

Eva-Maria Strauch; Steffen M Bernard; David La; Alan J Bohn; Peter S Lee; Caitlin E Anderson; Travis Nieusma; Carly A Holstein; Natalie K Garcia; Kathryn A Hooper; Rashmi Ravichandran; Jorgen W Nelson; William Sheffler; Jesse D Bloom; Kelly K Lee; Andrew B Ward; Paul Yager; Deborah H Fuller; Ian A Wilson; David Baker

2017-06-12 (online)

Nature Biotechnology (Nat. Biotechnol.). 35, 7, 667-671. doi:10.1038/nbt.3907

Description

Uses computation to design an antibody for influenza A

tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables

2017-tica-metadynamics

Mohammad M. Sultan; Vijay S. Pande

2017-05-09 (online) – 2017-06-13 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 13, 6, 2440-2447. doi:10.1021/acs.jctc.7b00182

Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations

2016-noe-reversible-tica

Hao Wu; Feliks Nüske; Fabian Paul; Stefan Klus; Péter Koltai; Frank Noé

2017-04-21 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 146, 15, 154104. doi:10.1063/1.4979344 arxiv:1610.06773

Description

Provides a better way of "symetrizing" tICA correlation matrix. In tICA, you assume that the dynamics are reversible. When we're learning from finite data, this reversibility isn't respected. Historically, you take your correlation matrix, add its transpose, and divide by two. This is an especially poor approximation if you have many short trajectories. This paper is analogous to the MLE method for symetrizing MSM counts matrices.

NumEntryWhy
46 2015-uncertainty-estimation Reversibility makes analysis easier
50 2013-noe-variational
51 2013-noe-tica
52 2014-nuske-variational

msm-theory

Learning Important Features Through Propagating Activation Differences

2017-deep-lift

Avanti Shrikumar; Peyton Greenside; Anshul Kundaje

2017-04-10 (online)

arxiv:1704.02685

Description

Decompose ouput predictions

machine-learning deep-learning

Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15

2017-amber15fb

Lee-Ping Wang; Keri A. McKiernan; Joseph Gomes; Kyle A. Beauchamp; Teresa Head-Gordon; Julia E. Rice; William C. Swope; Todd J. Martínez; Vijay S. Pande

2017-04-06 (online) – 2017-04-27 (print)

The Journal of Physical Chemistry B (J. Phys. Chem. B). 121, 16, 4023-4039. doi:10.1021/acs.jpcb.7b02320

forcefield

Markov modeling reveals novel intracellular modulation of the human TREK-2 selectivity filter

2016-trek2

Matthew P. Harrigan; Keri A. McKiernan; Veerabahu Shanmugasundaram; Rajiah Aldrin Denny; Vijay S. Pande

2017-04-04 (online) – 2017-12-01 (print)

Scientific Reports (Sci. Rep.). 7, 1, doi:10.1038/s41598-017-00256-y

Cryo-EM Structure of the Open Human Ether-à-go-go -Related K + Channel hERG

2017-herg-structure

Weiwei Wang; Roderick MacKinnon

2017-04-01 (print)

Cell (Cell). 169, 3, 422-430.e10. doi:10.1016/j.cell.2017.03.048

PDB codes

5va1, 5va2, 5va3

kv

Set-free Markov state model building

2017-set-free-msm

Marcus Weber; Konstantin Fackeldey; Christof Schütte

2017-03-28 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 146, 12, 124133. doi:10.1063/1.4978501

Description

Collection of m "base points" they make a gaussian RBF of distances to base points. They normalize it to unity. This is the softmax function, but they don't call it that.

They add base points adaptively and use PCCA+ to lump.

Note that they have stopped calling this "meshless" or "mesh-free", probably because the regular MSM is also meshless. Now the abstract says "This kind of meshless discretization..."

Structures of closed and open states of a voltage-gated sodium channel

2017-navab

Michael J. Lenaeus; Tamer M. Gamal El-Din; Christopher Ing; Karthik Ramanadane; Régis Pomès; Ning Zheng; William A. Catterall

2017-03-27 (online) – 2017-04-11 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 114, 15, E3051-E3060. doi:10.1073/pnas.1700761114

Description

Open PD/VSD (5vb8) and closed PD/VSD/CTD (5vb2)

PDB codes

5vb8, 5vb2

nav structure

The complete structure of an activated open sodium channel

2017-open-full-navms

Altin Sula; Jennifer Booker; Leo C. T. Ng; Claire E. Naylor; Paul G. DeCaen; B. A. Wallace

2017-02-16 (online)

Nature Communications (Nat. Commun.). 8, 14205. doi:10.1038/ncomms14205

Description

First full-length, open conformation. 2017-navab has a full-length closed. This is NavMs and that is NavAb.

PDB codes

5hvx, 5hvd

nav structure

Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution

2017-euk-navpas

Huaizong Shen; Qiang Zhou; Xiaojing Pan; Zhangqiang Li; Jianping Wu; Nieng Yan

2017-02-09 (online) – 2017-03-03 (print)

Science (Science). 355, 6328, eaal4326. doi:10.1126/science.aal4326

Description

First eukaryotic structure. CryoEM of cockroach NaV. Might not be a NaV. No elecrophysiology can be performed. Was originally called PaFPC1, they renamed it NaVPaS

PDB codes

5x0m

nav structure

Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field

2017-vsd-only-pmf

Rui-Ning Sun; Haipeng Gong

2017-02-09 (online) – 2017-03-02 (print)

The Journal of Physical Chemistry Letters (J. Phys. Chem. Lett.). 8, 5, 901-908. doi:10.1021/acs.jpclett.7b00023

Description

They simulated only one domain. They took the NavAb vsd and connected it via molecular dynamics to a homology model to a sea squirt vsd. They used a polarizable force-field, which is more expensive than normal (fixed charge) forcefields but that might be important for something so intertwined with moving electrical charges!

nav

Identification of simple reaction coordinates from complex dynamics

2016-sparsetica

Robert T. McGibbon; Brooke E. Husic; Vijay S. Pande

2017-01-28 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 146, 4, 044109. doi:10.1063/1.4974306 arxiv:1602.08776

Description

The authors argue for a definition of the reaction coordinate as the projection on the dominant eigenfunciton of the propogator. Notably, they say that path-based coordinates are no good, because progress is only defined along the path. They argue that the coordinate shouldn't depend on start and end points. They say the projection should be maximally predictive. This means finding the slowest modes. They note 2006-nadler-diffusion-maps (ref. 61) and 2011-rohrdanz-diffusion-maps (ref. 62) have used this definition.

They go on to show tICA finds this reaction coordinate. To make tICA more interpretable, they develop an algorithm for introducing a sparsity pattern. It's a pseudo-l0 regularization (made smooth so the optimization works).

They also use a unique dihedral featurization: instead of taking the sine and cosine to get around periodicity concerns; they project the values on a bunch of evenly spaced von-mises (periodic gaussians) distributions around the unit circle. Each dihedral is expanded into several numbers. It's like a smooth histogramming. This probably won't work as the number of dihedrals gets large (too many features).

NumEntryWhy
61 2006-nadler-diffusion-maps
62 2011-rohrdanz-diffusion-maps

msm-theory tica features

MSMBuilder: Statistical Models for Biomolecular Dynamics

2016-msmbuilder3

Matthew P. Harrigan; Mohammad M. Sultan; Carlos X. Hernández; Brooke E. Husic; Peter Eastman; Christian R. Schwantes; Kyle A. Beauchamp; Robert T. McGibbon; Vijay S. Pande

2017-01-01 (print)

Biophysical Journal (Biophys. J.). 112, 1, 10-15. doi:10.1016/j.bpj.2016.10.042

software

Optimized parameter selection reveals trends in Markov state models for protein folding

2016-husic-msms

Brooke E. Husic; Robert T. McGibbon; Mohammad M. Sultan; Vijay S. Pande

2016-11-21 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 145, 19, 194103. doi:10.1063/1.4967809

Description

The authors perform GMRQ cross validation on the twelve 2011-larsen-folding folding trajectories to give guidelines for MSM construction.

They present a flowchart for MSM construction that shows the three paths towards clustering: from an rmsd distance metric, from features, or from tICA learned on features.

They introduce GMRQ cross validation in the tradition of 2015-mcgibbon-gmrq (ref. 44).

They present results but stress that you have to do your own cross validataion to be sure. Some conclusions include: 1. tICA and PCA are better than direct clustering of features 2. when using tica, you can use kcenters, kmeans, or minibatch kmeans to the same effect

On one protein (2p6j) they look at all different features and show that they vary a lot. It's unfortunate that this was only done on one protein.

NumEntryWhy
41 2013-noe-variational Variational principle
42 2014-nuske-variational Variational principle
5 2008-anton Generated the trajectories.
18 2011-larsen-folding Re-analyzed these simulations. "Diversity of proteins analyzed"
44 2015-mcgibbon-gmrq Cross-validation

msm-theory

Commute Maps: Separating Slowly Mixing Molecular Configurations for Kinetic Modeling

2016-commute-maps

Frank Noé; Ralf Banisch; Cecilia Clementi

2016-11-08 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 12, 11, 5620-5630. doi:10.1021/acs.jctc.6b00762

Description

Scale tIC coordinates by a function of the timescale. See also 2015-kinetic-mapping.

msm-theory

Hybrid computing using a neural network with dynamic external memory

2016-neural-computers

Alex Graves; Greg Wayne; Malcolm Reynolds; Tim Harley; Ivo Danihelka; Agnieszka Grabska-Barwińska; Sergio Gómez Colmenarejo; Edward Grefenstette; Tiago Ramalho; John Agapiou; Adrià Puigdomènech Badia; Karl Moritz Hermann; Yori Zwols; Georg Ostrovski; Adam Cain; Helen King; Christopher Summerfield; Phil Blunsom; Koray Kavukcuoglu; Demis Hassabis

2016-10-12 (online)

Nature (Nature). 538, 7626, 471-476. doi:10.1038/nature20101

Description

Augment deep networks with an external memory (RAM) matrix.

Bart says: "TL;DR: This work follows a line of research that teaches deep-nets to learn algorithmic tasks (addition, sorting, multiplication, key-value look-up). This paper goes a bit further and teaches their network to do shortest-path finding in graphs and demonstrates on maps of the London underground. Cool demo with nice results, but the hype-machine has blown it out of proportion (check out the FT article for a breathless take claiming thinking computers are one step closer...)"

machine-learning deep-learning

Automatic chemical design using a data-driven continuous representation of molecules

2016-aspuru-mol-feat

Rafael Gómez-Bombarelli; David Duvenaud; José Miguel Hernández-Lobato; Jorge Aguilera-Iparraguirre; Timothy D. Hirzel; Ryan P. Adams; Alán Aspuru-Guzik

2016-10-07 (online)

arxiv:1610.02415

Description

The authors train an auto-encoder to provide a vector representation for small molecules. Small molecules are graphs with varying sizes, so they're hard to feed into neural nets (which require fixed-length bitvectors). By fusing together an encoder and decoder (and making the "middle" representation sufficiently small), they learn a vector representation.

The authors lean heavily on arxiv:1511.06349 (ref. 25) to autoencode SMILES strings.

They use a variational autoencoder (noisy) to avoid "dead zones" in latent space.

They optomize OLED properties as an example.

NumEntryWhy
25 arxiv:1511.06349

machine-learning cheminformatics misc

Modelling proteins’ hidden conformations to predict antibiotic resistance

2016-msm-cryptic-binding

Kathryn M. Hart; Chris M. W. Ho; Supratik Dutta; Michael L. Gross; Gregory R. Bowman

2016-10-06 (online)

Nature Communications (Nat. Commun.). 7, 12965. doi:10.1038/ncomms12965

Description

Labmate summarizes:

They generated ensembles using MD, then docked to those ensembles, then re-weighted the docking scores based on the MSM. This gave a huge improvement in the predictive power of docking to predict affinity/potency. It turned an inverse relationship (when docking using xtal structures) into a highly correlated trend.

They confirmed their hypothesis about the protein flexibility by using a mass spec. method.

They identified a loop movement important in the anti-antibacterial activity of the enzyme that was different from one previously proposed/suspected.

They proposed mutants that would stabilize their proposed loop, and tested them experimentally.

The power of using the MSM to re-weight other analyses is also very encouraging to see yet again. Also note that they did all this with what looks like a pretty low amount of aggregate sampling (few microseconds per mutant).

misc

A functional architecture for scalable quantum computing

2016-scalable

Eyob A. Sete; William J. Zeng; Chad T. Rigetti

2016-10-01 (print)

2016 IEEE International Conference on Rebooting Computing (ICRC) (2016 IEEE International Conference on Rebooting Computing (ICRC)). doi:10.1109/ICRC.2016.7738703

Description

Quantum simulation algorithsm (ref. 1) (ref. 2) (ref. 3).

Quantum machine learning (ref. 4)

Quantum error correction benchmarks (ref. 5) (ref. 6) (ref. 7).

Variational quantum eigensolvers (ref. 8) (ref. 9) (ref. 10).

Correlated material simulations (ref. 11).

Approximate optimization (ref. 12).

For the problems of catalysts (ref. 13) and high temperature superconductivity (ref. 9) show promise.

Cryo operation and superconducting materials means no sissipation preserving quantum coherance.

Transmon qubits have large coherence time (ref. 14). Fluxonium qubits have wide frequency tunability and strong nonlinearity (ref. 15). This means fluxonium are better for two-qubit gates.

Quantum limited amplifiers (ref. 16) (ref. 17) (ref. 18): Josephson parametric amplifier, Josephson bifurcation amplifier, and Josephson parametric converter. Non-linear resonators.

Can do rotations Rx and Ry on any qubit. Can do SWAP between any transmon and fluxonium. Can do CPhase between any fluxonium and half the transmons. All gates can be made with these primitives (ref. 19).

Introduce "TQF" estimate of width * depth of quantum circuit you can run. (ref. 1) runs electronic structure for very small molecules.

Transmon can be "data" for surface code error correction (ref. 24) (ref. 25) and fluxonium as ancillas for parity measurement.

Quantum-Enhanced Machine Learning

2016-quantum-ml

Vedran Dunjko; Jacob M. Taylor; Hans J. Briegel

2016-09-20 (online)

Physical Review Letters (Phys. Rev. Lett.). 117, 13, doi:10.1103/PhysRevLett.117.130501

Structural analysis of high-dimensional basins of attraction

2016-mbar-volumes

Stefano Martiniani; K. Julian Schrenk; Jacob D. Stevenson; David J. Wales; Daan Frenkel

2016-09-15 (online)

Physical Review E (Phys. Rev. E). 94, 3, doi:10.1103/PhysRevE.94.031301

Description

Use multistate benett acceptance (MBAR) to find volumes in high dimensions.

misc

Osprey: Hyperparameter Optimization for Machine Learning

2016-osprey

Robert T. McGibbon; Carlos X. Hernández; Matthew P. Harrigan; Steven Kearnes; Mohammad M. Sultan; Stanislaw Jastrzebski; Brooke E. Husic; Vijay S. Pande

2016-09-07 (print)

The Journal of Open Source Software (The Journal of Open Source Software). 1, 5, doi:10.21105/joss.00034

Neural Coarse-Graining: Extracting slowly-varying latent degrees of freedom with neural networks

2016-guttenberg-deep-slow

Nicholas Guttenberg; Martin Biehl; Ryota Kanai

2016-09-01 (online)

arxiv:1609.00116

Description

Somehow uses deep networks to extract slow modes from dynamical signals.

machine-learning deep-learning

Instantaneous ion configurations in the K+ion channel selectivity filter revealed by 2D IR spectroscopy

2016-kratochvil-soft-knock

Huong T. Kratochvil; Joshua K. Carr; Kimberly Matulef; Alvin W. Annen; Hui Li; Michał Maj; Jared Ostmeyer; Arnaldo L. Serrano; H. Raghuraman; Sean D. Moran; J. L. Skinner; Eduardo Perozo; Benoît Roux; Francis I. Valiyaveetil; Martin T. Zanni

2016-09-01 (online) – 2016-09-02 (print)

Science (Science). 353, 6303, 1040-1044. doi:10.1126/science.aag1447

Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution

2016-cav-structure

Jianping Wu; Zhen Yan; Zhangqiang Li; Xingyang Qian; Shan Lu; Mengqiu Dong; Qiang Zhou; Nieng Yan

2016-08-31 (online)

Nature (Nature). 537, 7619, 191-196. doi:10.1038/nature19321

Description

Cav structure. What's the diference between 2015-cav-structure

PDB codes

5gjv, 5gjw

cav

A Practical Quantum Instruction Set Architecture

2016-quil

Robert S. Smith; Michael J. Curtis; William J. Zeng

2016-08-11 (online)

arxiv:1608.03355

The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides

2016-btx-insect

Yongqiang Zhang; Yuzhe Du; Dingxin Jiang; Caitlyn Behnke; Yoshiko Nomura; Boris S. Zhorov; Ke Dong

2016-08-03 (online) – 2016-09-16 (print)

Journal of Biological Chemistry (J. Biol. Chem.). 291, 38, 20113-20124. doi:10.1074/jbc.M116.742056

Description

Homology model to open cockroach channel and docking study

nav

Scalable Quantum Simulation of Molecular Energies

2016-h2-vqe

P. J. J. O’Malley; R. Babbush; I. D. Kivlichan; J. Romero; J. R. McClean; R. Barends; J. Kelly; P. Roushan; A. Tranter; N. Ding; B. Campbell; Y. Chen; Z. Chen; B. Chiaro; A. Dunsworth; A. G. Fowler; E. Jeffrey; E. Lucero; A. Megrant; J. Y. Mutus; M. Neeley; C. Neill; C. Quintana; D. Sank; A. Vainsencher; J. Wenner; T. C. White; P. V. Coveney; P. J. Love; H. Neven; A. Aspuru-Guzik; J. M. Martinis

2016-07-18 (online)

Physical Review X (Physical Review X). 6, 3, doi:10.1103/PhysRevX.6.031007

Description

Solves molecular hydrogen with variational quantum eigensolver (which is hybrid quantum - classical) and compares to trotterization and quantum phase estimation. The VQE is better.

Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale

2015-ensembler

Daniel L. Parton; Patrick B. Grinaway; Sonya M. Hanson; Kyle A. Beauchamp; John D. Chodera

2016-06-23 (online)

PLOS Computational Biology (PLoS Comput. Biol.). 12, 6, e1004728. doi:10.1371/journal.pcbi.1004728

Description

Automatic generation of homology models of protein families

Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states

mcclenaghan2016polymodal

Conor McClenaghan; Marcus Schewe; Prafulla Aryal; Elisabeth P. Carpenter; Thomas Baukrowitz; Stephen J. Tucker

2016-05-30 (online) – 2016-06-01 (print)

The Journal of General Physiology (J. Gen. Physiol.). 147, 6, 497-505. doi:10.1085/jgp.201611601

TensorFlow: A system for large-scale machine learning

2016-tensorflow

Martín Abadi; Paul Barham; Jianmin Chen; Zhifeng Chen; Andy Davis; Jeffrey Dean; Matthieu Devin; Sanjay Ghemawat; Geoffrey Irving; Michael Isard; Manjunath Kudlur; Josh Levenberg; Rajat Monga; Sherry Moore; Derek G. Murray; Benoit Steiner; Paul Tucker; Vijay Vasudevan; Pete Warden; Martin Wicke; Yuan Yu; Xiaoqiang Zheng

2016-05-27 (online)

arxiv:1605.08695

Transmembrane Potential Modeling: Comparison between Methods of Constant Electric Field and Ion Imbalance

2016-melcr-membrane-compare

Josef Melcr; Daniel Bonhenry; Štěpán Timr; Pavel Jungwirth

2016-05-10 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 12, 5, 2418-2425. doi:10.1021/acs.jctc.5b01202

Description

Compare external electric field with ion imbalance.

HTMD: High-Throughput Molecular Dynamics for Molecular Discovery

2016-htmd

S. Doerr; M. J. Harvey; Frank Noé; G. De Fabritiis

2016-04-12 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 12, 4, 1845-1852. doi:10.1021/acs.jctc.6b00049

Description

This can make MSMs in addition to being a one-stop shop for running MD.

It's available under an academic license.

software python

Markov State Models and tICA Reveal a Nonnative Folding Nucleus in Simulations of NuG2

2016-schwantes-nug2

Christian R. Schwantes; Diwakar Shukla; Vijay S. Pande

2016-04-01 (print)

Biophysical Journal (Biophys. J.). 110, 8, 1716-1719. doi:10.1016/j.bpj.2016.03.026

Description

They find an intermediate in 2011-larsen-folding NuG2 trajectories that is a register shift that was missed before tICA+MSM.

Statistical models of protein conformational dynamics

2016-mcgibbon-thesis

Robert McGibbon

2016-03-01 (print)

Description

Chapter 1 is a bespoke introduction to MD and MSMs

Chapter 2 is adapted from 2013-mcgibbon-kdml (ref. 37).

Chapter 3 is adapted from 2014-mcgibbon-hmm (ref. 92).

Chapter 4 is adapted from 2015-ratematrix (ref. 120).

Chapter 5 is adapted from 2014-mcgibbon-bic (ref. 162).

Chapter 6 is adapted from 2015-mcgibbon-gmrq (ref. 214).

Chapter 7 is adapted from 2016-sparsetica.

Chapter 8 is adapted from 2015-mdtraj.

NumEntryWhy
37 2013-mcgibbon-kdml
92 2014-mcgibbon-hmm
120 2015-ratematrix
162 2014-mcgibbon-bic
214 2015-mcgibbon-gmrq

Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel

ren2016allosteric

Ren-Gong Zhuo; Peng Peng; Xiao-Yan Liu; Hai-Tao Yan; Jiang-Ping Xu; Jian-Quan Zheng; Xiao-Li Wei; Xiao-Yun Ma

2016-02-16 (online) – 2016-08-01 (print)

Scientific Reports (Sci. Rep.). 6, 1, doi:10.1038/srep21248

Notes on the Theory of Markov Chains in a Continuous State Space

2016-mcgibbon-notes

Robert McGibbon

2016-02-12 (online)

A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K+ Channels

schewe2016non

Marcus Schewe; Ehsan Nematian-Ardestani; Han Sun; Marianne Musinszki; Sönke Cordeiro; Giovanna Bucci; Bert L. de Groot; Stephen J. Tucker; Markus Rapedius; Thomas Baukrowitz

2016-02-01 (print)

Cell (Cell). 164, 5, 937-949. doi:10.1016/j.cell.2016.02.002

Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs

2016-btx-frogs

Rebecca D. Tarvin; Juan C. Santos; Lauren A. O'Connell; Harold H. Zakon; David C. Cannatella

2016-01-18 (online) – 2016-04-01 (print)

Molecular Biology and Evolution (Mol. Biol. Evol.). 33, 4, 1068-1081. doi:10.1093/molbev/msv350

Description

Evolutionary analysis and docking study on NaV 1.4 in frogs immune to toxins

nav

CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

2016-charmm-gui

Jumin Lee; Xi Cheng; Jason M. Swails; Min Sun Yeom; Peter K. Eastman; Justin A. Lemkul; Shuai Wei; Joshua Buckner; Jong Cheol Jeong; Yifei Qi; Sunhwan Jo; Vijay S. Pande; David A. Case; Charles L. Brooks; Alexander D. MacKerell; Jeffery B. Klauda; Wonpil Im

2016-01-12 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 12, 1, 405-413. doi:10.1021/acs.jctc.5b00935

software

Structure of the voltage-gated calcium channel Cav1.1 complex

2015-cav-structure

J. Wu; Z. Yan; Z. Li; C. Yan; S. Lu; M. Dong; N. Yan

2015-12-17 (online) – 2015-12-18 (print)

Science (Science). 350, 6267, aad2395-aad2395. doi:10.1126/science.aad2395

Description

also a cav structure.

PDB codes

3jbr

cav

Generating Sentences from a Continuous Space

arxiv:1511.06349

Samuel R. Bowman; Luke Vilnis; Oriol Vinyals; Andrew M. Dai; Rafal Jozefowicz; Samy Bengio

2015-11-19 (online)

arxiv:1511.06349

Description

Advances in autoencoding text, used by 2016-aspuru-mol-feat.

misc

PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models

2015-pyemma

Martin K. Scherer; Benjamin Trendelkamp-Schroer; Fabian Paul; Guillermo Pérez-Hernández; Moritz Hoffmann; Nuria Plattner; Christoph Wehmeyer; Jan-Hendrik Prinz; Frank Noé

2015-11-10 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 11, 11, 5525-5542. doi:10.1021/acs.jctc.5b00743

software python

Estimation and uncertainty of reversible Markov models

2015-uncertainty-estimation

Benjamin Trendelkamp-Schroer; Hao Wu; Fabian Paul; Frank Noé

2015-11-07 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 143, 17, 174101. doi:10.1063/1.4934536

Description

Reversible estimates for MSMs

MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

2015-mdtraj

Robert T. McGibbon; Kyle A. Beauchamp; Matthew P. Harrigan; Christoph Klein; Jason M. Swails; Carlos X. Hernández; Christian R. Schwantes; Lee-Ping Wang; Thomas J. Lane; Vijay S. Pande

2015-10-01 (print)

Biophysical Journal (Biophys. J.). 109, 8, 1528-1532. doi:10.1016/j.bpj.2015.08.015

software python

A Basis Set for Peptides for the Variational Approach to Conformational Kinetics

2015-amino-acid-basis

F. Vitalini; F. Noé; B. G. Keller

2015-09-08 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 11, 9, 3992-4004. doi:10.1021/acs.jctc.5b00498

Description

Authors simulate individual (capped) amino acids for 1us / each and construct (mini-)MSMs on each one. They use the outerproduct of these mini-MSMs to serve as a basis set for peptides. MiniMSMs are on a grid in phi-psi angles. Since each miniMSM has approx 3 modes, the full basis would be 3^(N), which is way too big! They call the second and third modes "excited states" and use a basis set that contains a singly-exited residue. E.g. 11111 + [ [21111, 121111, 112111, 111211, ...] ].

Alanine preceded by a proline is taken as a special case.

msm-theory

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

2015-gromacs

Mark James Abraham; Teemu Murtola; Roland Schulz; Szilárd Páll; Jeremy C. Smith; Berk Hess; Erik Lindahl

2015-09-01 (print)

SoftwareX (SoftwareX). 1-2, 19-25. doi:10.1016/j.softx.2015.06.001

software

Programming the quantum future

2015-quipper

Benoît Valiron; Neil J. Ross; Peter Selinger; D. Scott Alexander; Jonathan M. Smith

2015-07-23 (print)

Communications of the ACM (Commun. ACM). 58, 8, 52-61. doi:10.1145/2699415

Description

Quantum programming language implemented inside Haskell. Invisions quantum co-processor.

Efficient maximum likelihood parameterization of continuous-time Markov processes

2015-ratematrix

Robert T. McGibbon; Vijay S. Pande

2015-07-21 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 143, 3, 034109. doi:10.1063/1.4926516

msm-theory

A critical appraisal of Markov state models

2015-schutte-msm

Ch. Schütte; M. Sarich

2015-06-22 (online) – 2015-09-01 (print)

The European Physical Journal Special Topics (The European Physical Journal Special Topics). 224, 12, 2445-2462. doi:10.1140/epjst/e2015-02421-0

Description

Transfer operator 1999-schutte-msm (ref. 1).

Coarse grain MSM states 2000-pcca (ref. 2) 2005-pcca (ref. 3).

Meshless MSMs 2006-meshless-msm-thesis (ref. 24) 2011-meshless-msm (ref. 32) 2011-meshless-msm (ref. 33). Wikipedia says these are also called "meshfree" methods.

NumEntryWhy
1 1999-schutte-msm
2 2000-pcca
3 2005-pcca
24 2006-meshless-msm-thesis
32 2011-meshless-msm
33 2011-meshless-msm

Kinetic distance and kinetic maps from molecular dynamics simulation

2015-kinetic-mapping

Frank Noe; Cecilia Clementi

2015-06-20 (online)

arxiv:1506.06259

Description

Scale tIC coorindates by the eigenvalue. See also 2016-commute-maps.

Automated construction of order parameters for analyzing simulations of protein folding and water dynamics

2015-schwantes-thesis

Christian Schwantes

2015-05-01 (print)

Description

Section 1.2 is adapted from 2015-schwantes-ktica (ref. 27) and 2014-mcgibbon-bic (ref. 28).

Chapter 2 is adapted from 2014-mcgibbon-bic (ref. 28).

Chapter 3 is adapted from 2013-schwantes-tica (ref. 73).

Chapter 4 is adapted from 2016-schwantes-nug2 (ref. 122).

Chapter 5 is adapted from 2015-schwantes-ktica (ref. 27).

Chapter 6 is supposed to have been submitted for publication.

NumEntryWhy
27 2015-schwantes-ktica
28 2014-mcgibbon-bic
28 2014-mcgibbon-bic
73 2013-schwantes-tica
122 2016-schwantes-nug2
27 2015-schwantes-ktica

Variational cross-validation of slow dynamical modes in molecular kinetics

2015-mcgibbon-gmrq

Robert T. McGibbon; Vijay S. Pande

2015-03-28 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 142, 12, 124105. doi:10.1063/1.4916292

msm-theory variational

K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac

2015-carpenter-structures

Y. Y. Dong; A. C. W. Pike; A. Mackenzie; C. McClenaghan; P. Aryal; L. Dong; A. Quigley; M. Grieben; S. Goubin; S. Mukhopadhyay; G. F. Ruda; M. V. Clausen; L. Cao; P. E. Brennan; N. A. Burgess-Brown; M. S. P. Sansom; S. J. Tucker; E. P. Carpenter

2015-03-12 (online) – 2015-03-13 (print)

Science (Science). 347, 6227, 1256-1259. doi:10.1126/science.1261512

Description

Structures of up and down trek2.

Cites 2010-k2p-review (ref. 1) for background.

PDB codes

4XDJ (down state), 4BW5 (up state), 4XDL (Br-fluoxetine complex, down), 4XDK (norfluoxetine complex, down)

NumEntryWhy
1 2010-k2p-review

kchan structures

Conserve Water: A Method for the Analysis of Solvent in Molecular Dynamics

2015-wetmsm

Matthew P. Harrigan; Diwakar Shukla; Vijay S. Pande

2015-03-10 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 11, 3, 1094-1101. doi:10.1021/ct5010017

Description

Solvent-shells featurization for including solvent in MSM construction.

Gaussian Markov transition models of molecular kinetics

2015-gaussian-msms

Hao Wu; Frank Noé

2015-02-28 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 142, 8, 084104. doi:10.1063/1.4913214

Description

Variational method 2013-noe-variational (ref. 26) 2014-nuske-variational (ref. 27).

MSM is variational with step functions 2013-noe-variational (ref. 26).

"Markov transition models (MTMs)", specifically Gaussian mixtures (GMTM).

NumEntryWhy
26 2013-noe-variational
27 2014-nuske-variational
26 2013-noe-variational

msm-theory

Markov State Models Provide Insights into Dynamic Modulation of Protein Function

2015-shukla-msm-review

Diwakar Shukla; Carlos X. Hernández; Jeffrey K. Weber; Vijay S. Pande

2015-02-17 (print)

Accounts of Chemical Research (Acc. Chem. Res.). 48, 2, 414-422. doi:10.1021/ar5002999

review

Modeling Molecular Kinetics with tICA and the Kernel Trick

2015-schwantes-ktica

Christian R. Schwantes; Vijay S. Pande

2015-02-10 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 11, 2, 600-608. doi:10.1021/ct5007357

Description

They introduce kernel tICA as an extension to tICA. This is useful to get non-linear solutions to the tICA equation. They claim you can estimate eigenprocesses without building an MSM.

They briefly introduce the transfer operator. They introduce the variational principle of conformation dynamics per 2011-prinz (ref. 25). They introduce tICA as maximizing the autocorrelation. They say that solutions to tICA are the same as solutions to the variational problem per 2013-noe-tica (ref. 28). Linearity makes them crude solutions.

They explain that a natural approach to introduce non-linearity is to expand the original representation into a higher dimensional space and do tICA there. They say this is impractical. The expanded space probably has to be huge. You can perform analysis in the big representation without explicitly representing it by using the "kernel trick". They reproduce an example of the kernel trick from 1998-scholkopf-kernel-pca (ref. 39).

They re-write the tICA problem only in terms of inner products so you can apply the kernel trick. They introduce normalization. They choose a gaussian kernel. They simulate a four-well potential, muller potential, alanine dipeptide, and fip35ww. They need to do MLE cross validation over parameters (kernel width and regularization strength).

This uses so much RAM! Huge matrices to solve (that scale with the amount of data!!)

NumEntryWhy
21 2014-msm-perspective Data needs analysis
25 2011-prinz Details of transfer operator approach.
33 2001-schutte-variational Details of transfer operator approach.
34 2013-noe-variational "It was shown that a variational principle can be derived for the eignvalues of the transfer operator." The autocorelation of a function is less than the autocorrelation of the first dynamical eigenfunction of the transfer operator. This is used to argue that you don't have to estimate the operator itself. Just estimate its eigenfunctions
35 2014-nuske-variational "Successfully constructed estimates of the top eigenfunctions in the span of a prespecified library of basis functions." Contrast with this work, which "does not require a predefined basis set"
22 2013-schwantes-tica Citing tICA
28 2013-noe-tica solutions to tica provide estimates of the slowest eigenfunctions of the transfer operator.
36 doi:10.1103/PhysRevLett.72.3634 Citing tICA
37 doi:10.1162/neco.2006.18.10.2495 Citing tICA
39 1998-scholkopf-kernel-pca Used to introduce ther kernel trick.

msm-theory

State-independent intracellular access of quaternary ammonium blockers to the pore of TREK-1

rapedius2012state

Markus Rapedius; Matthias R. Schmidt; Chetan Sharma; Phillip J. Stansfeld; Mark S.P. Sansom; Thomas Baukrowitz; Stephen J. Tucker

2014-10-31 (online) – 2012-11-18 (print)

Channels (Channels). 6, 6, 473-478. doi:10.4161/chan.22153

Molecular regulations governing TREK and TRAAK channel functions

noel2011molecular

Jacques Noël; Guillaume Sandoz; Florian Lesage

2014-10-27 (online) – 2011-09-01 (print)

Channels (Channels). 5, 5, 402-409. doi:10.4161/chan.5.5.16469

Potassium ions line up

hummer2014potassium

G. Hummer

2014-10-16 (online) – 2014-10-17 (print)

Science (Science). 346, 6207, 303-303. doi:10.1126/science.1260555

Ion permeation in K+ channels occurs by direct Coulomb knock-on

2014-kopfer-hard-knock

D. A. Kopfer; C. Song; T. Gruene; G. M. Sheldrick; U. Zachariae; B. L. de Groot

2014-10-16 (online) – 2014-10-17 (print)

Science (Science). 346, 6207, 352-355. doi:10.1126/science.1254840

Description

Introduces a new way of simulating a membrane potential: They stack two membranes on top of one another, creating an "inside" between the two. This doesn't hurt simulation throughput, because you get twice as much protein motion data in the same amount of simulation time (ignore extra factor of log n in system size). This seems to be a refinement on their earlier work in 2011-kutzner-double-membrane (ref. 25).

They hide the startling fact that every time an ion moves through the channel, they have to instantaneously move it back inside. Benoit has argued that this instantaneous jump, which can be a 100 mV difference is rediculous.

The main point of this paper is that ions translocate through the four sites of potassium channel without any waters between them. This "hard knock" mechanism is in contrast to a "soft knock" mechanism where the ion-ion interactions are softened by interviening waters.

They re-refine the xray data to show it is consistent with the hard-knock mechanism.

NumEntryWhy
25 2011-kutzner-double-membrane

kchan md-applications

Perspective: Markov models for long-timescale biomolecular dynamics

2014-msm-perspective

C. R. Schwantes; R. T. McGibbon; V. S. Pande

2014-09-07 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 141, 9, 090901. doi:10.1063/1.4895044

Description

Very good perspective on the importance of analysis (particularly MSM analysis) for understanding large, modern MD datasets. Money quote: "we believe that quantitative analysis has increasingly become a limiting factor in the application of MD"

msm-theory perspective

A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel

aryal2014hydrophobic

Prafulla Aryal; Firdaus Abd-Wahab; Giovanna Bucci; Mark S. P. Sansom; Stephen J. Tucker

2014-07-08 (online)

Nature Communications (Nat. Commun.). 5, doi:10.1038/ncomms5377

Statistical Model Selection for Markov Models of Biomolecular Dynamics

2014-mcgibbon-bic

Robert T. McGibbon; Christian R. Schwantes; Vijay S. Pande

2014-06-19 (print)

The Journal of Physical Chemistry B (J. Phys. Chem. B). 118, 24, 6475-6481. doi:10.1021/jp411822r

Description

This is before 2015-mcgibbon-gmrq GRMQ cross-validation. They explicitly find the volume of voronoi cells (in low number of tIC space) to find a likelihood. They use AIC/BIC to find the number of states to use. Finding volumes is tough and you still can't compare across protocols (so you can basically only scan number of states or clustering method), but! this was the first paper to seriously suggest using a smaller number of states to avoid overfitting.

msm cross-validation

Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion

2014-moore-coarsegrain

Timothy C. Moore; Christopher R. Iacovella; Clare McCabe

2014-06-14 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 140, 22, 224104. doi:10.1063/1.4880555

Description

Coarse-graining?

Identifying and attacking the saddle point problem in high-dimensional non-convex optimization

2014-ganguli-saddle-points

Yann Dauphin; Razvan Pascanu; Caglar Gulcehre; Kyunghyun Cho; Surya Ganguli; Yoshua Bengio

2014-06-10 (online)

arxiv:1406.2572

Description

Labmate summarizes:

This one is a really cool paper. One of those "we've all been doing it wrong" papers that could have a big impact. Their main conclusions are

1. When optimizing functions in high dimensional spaces, saddle points are a much bigger problem than local minima. There are far more of them, and the few local minima that do exist mostly have values only slightly worse than the global minimum.

2. Standard optimization methods deal really badly with saddle points (and hence work really badly in high dimensional spaces). First order methods like gradient descent start taking tiny steps, so they take a really long time to escape. Quasi-Newton methods are even worse. They just converge to the saddle point and never escape.

3. They describe a new approach that doesn't have these problems and goes right through saddle points without slowing down.

They do all this in the context of neural networks, but it likely applies just as well to other high dimensional optimization problems. Proteins, for example. When you use an algorithm like L-BFGS for energy minimization, it's probably converging to a saddle point, not a local minimum. It could be really interesting to try their method. Could we fold a protein to the native state just by a straightforward energy minimization?

Force field optimization is another case whether this approach could be really useful.

They also show that at a saddle point, there's a strong monotonic relationship between the error and the fraction of negative eigenvalues of the Hessian. Potentially that could be used as a way to measure how far you are from the global minimum. For example, when optimizing force field parameters, it would tell you whether your parameters are close to optimal, or whether there's still a lot of room to improve them further.

misc machine-learning deep-learning

Using Markov state models to study self-assembly

perkett_using_2014

Matthew R. Perkett; Michael F. Hagan

2014-06-07 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 140, 21, 214101. doi:10.1063/1.4878494

Description

Cited by 2015-wetmsm as successful MSM application for self-assembly

Building Force Fields: An Automatic, Systematic, and Reproducible Approach

2014-forcebalance

Lee-Ping Wang; Todd J. Martinez; Vijay S. Pande

2014-06-05 (print)

The Journal of Physical Chemistry Letters (J. Phys. Chem. Lett.). 5, 11, 1885-1891. doi:10.1021/jz500737m

forcefield

Fs MD Trajectories

2014-fs-peptide

Robert McGibbon

2014-05-01 (online)

doi:10.6084/m9.figshare.1030363.v1

Do Lipids Show State-dependent Affinity to the Voltage-gated Potassium Channel KvAP?

faure_lipids_2014

Élise Faure; Christine Thompson; Rikard Blunck

2014-04-17 (online) – 2014-06-06 (print)

Journal of Biological Chemistry (J. Biol. Chem.). 289, 23, 16452-16461. doi:10.1074/jbc.M113.537134

Description

Cited by 2015-wetmsm where lipids are important for modulation of ion channel function

Variational Approach to Molecular Kinetics

2014-nuske-variational

Feliks Nüske; Bettina G. Keller; Guillermo Pérez-Hernández; Antonia S. J. S. Mey; Frank Noé

2014-04-08 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 10, 4, 1739-1752. doi:10.1021/ct4009156

Description

This paper is largely redundant with 2013-noe-variational (ref. 65). They cite it as such: "Following the recently introduced variational principle for metastable stochastic processes,(65) we propose a variational approach to molecular kinetics."

They perform their variational approach on 2- and 10-alanine in addition to 1D potentials.

This comes after tICA and cites 2013-schwantes-tica (ref. 57) and 2013-noe-tica (ref. 58) in the intro, but does nothing further with it. In particular, they don't note that tICA is just another choice of basis set.

They cite their error paper 2010-msm-error (ref. 55).

NumEntryWhy
65 2013-noe-variational
57 2013-schwantes-tica
58 2013-noe-tica
55 2010-msm-error

msm-theory variational

Markov state models of biomolecular conformational dynamics

2014-chodera-msm

John D Chodera; Frank Noé

2014-04-01 (print)

Current Opinion in Structural Biology (Curr. Opin. Struct. Biol.). 25, 135-144. doi:10.1016/j.sbi.2014.04.002

Description

Overview of MSMs, stressing eigensystem and variational approach. Includes further reading suggestions.

msm-theory perspective

Activation pathway of Src kinase reveals intermediate states as targets for drug design

2014-shukla-src-kinase

Diwakar Shukla; Yilin Meng; Benoît Roux; Vijay S. Pande

2014-03-03 (online)

Nature Communications (Nat. Commun.). 5, doi:10.1038/ncomms4397

Description

MSM analysis of c-Src kinase. The MSMBuilder paper uses the dataset from this paper as an example.

msm-applications

A Molecular Interpretation of 2D IR Protein Folding Experiments with Markov State Models

baiz_molecular_2014

Carlos R. Baiz; Yu-Shan Lin; Chunte Sam Peng; Kyle A. Beauchamp; Vincent A. Voelz; Vijay S. Pande; Andrei Tokmakoff

2014-03-01 (print)

Biophysical Journal (Biophys. J.). 106, 6, 1359-1370. doi:10.1016/j.bpj.2014.02.008

Description

Cited by 2015-wetmsm as successful MSM application for folding

Spectral Rate Theory for Two-State Kinetics

2014-prinz-rate

Jan-Hendrik Prinz; John D. Chodera; Frank Noé

2014-02-21 (online)

Physical Review X (Physical Review X). 4, 1, doi:10.1103/PhysRevX.4.011020

An Antifreeze Protein Folds with an Interior Network of More Than 400 Semi-Clathrate Waters

sun_antifreeze_2014

T. Sun; F.-H. Lin; R. L. Campbell; J. S. Allingham; P. L. Davies

2014-02-13 (online) – 2014-02-14 (print)

Science (Science). 343, 6172, 795-798. doi:10.1126/science.1247407

Description

Cited by 2015-wetmsm where solvent is important

Lipid14: The Amber Lipid Force Field

2014-lipid14

Callum J. Dickson; Benjamin D. Madej; Åge A. Skjevik; Robin M. Betz; Knut Teigen; Ian R. Gould; Ross C. Walker

2014-02-11 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 10, 2, 865-879. doi:10.1021/ct4010307

forcefield

Best Practices for Scientific Computing

2014-scicomp-best-practices

Greg Wilson; D. A. Aruliah; C. Titus Brown; Neil P. Chue Hong; Matt Davis; Richard T. Guy; Steven H. D. Haddock; Kathryn D. Huff; Ian M. Mitchell; Mark D. Plumbley; Ben Waugh; Ethan P. White; Paul Wilson

2014-01-07 (online)

PLoS Biology (PLoS Biol.). 12, 1, e1001745. doi:10.1371/journal.pbio.1001745

Structure of a Prokaryotic Sodium Channel Pore Reveals Essential Gating Elements and an Outer Ion Binding Site Common to Eukaryotic Channels

2014-closed-navae1p

David Shaya; Felix Findeisen; Fayal Abderemane-Ali; Cristina Arrigoni; Stephanie Wong; Shailika Reddy Nurva; Gildas Loussouarn; Daniel L. Minor

2014-01-01 (print)

Journal of Molecular Biology (J. Mol. Biol.). 426, 2, 467-483. doi:10.1016/j.jmb.2013.10.010

Description

Closed Pore and CTD in pore-only NavAe. Correlates CTD neck unfolding with activation.

PDB codes

4lto, 4ltp, 4ltq, 4ltr

nav structure

An exploratory study of the pull-based software development model

2014-pull-requests

Georgios Gousios; Martin Pinzger; Arie van Deursen

2014-01-01 (print)

Proceedings of the 36th International Conference on Software Engineering - ICSE 2014 (Proceedings of the 36th International Conference on Software Engineering - ICSE 2014). doi:10.1145/2568225.2568260

Description

Pull-request based development model

Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways

2014-kohlhoff-exacycle

Kai J. Kohlhoff; Diwakar Shukla; Morgan Lawrenz; Gregory R. Bowman; David E. Konerding; Dan Belov; Russ B. Altman; Vijay S. Pande

2013-12-15 (online)

Nature Chemistry (Nature Chem.). 6, 1, 15-21. doi:10.1038/nchem.1821

Description

They used Google's Exacycle to do these simulations. You can cite this for more examples of distributed computing. It's ostensibly about GPCRs.

distributed-computing

Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules

2013-noe-hmm

Frank Noé; Hao Wu; Jan-Hendrik Prinz; Nuria Plattner

2013-11-14 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 139, 18, 184114. doi:10.1063/1.4828816

Rapid Exploration of Configuration Space with Diffusion-Map-Directed Molecular Dynamics

2013-diffusion-map-sampling

Wenwei Zheng; Mary A. Rohrdanz; Cecilia Clementi

2013-10-24 (print)

The Journal of Physical Chemistry B (J. Phys. Chem. B). 117, 42, 12769-12776. doi:10.1021/jp401911h

Description

Use diffusion maps to run umberlla sampling

Role of the C-terminal domain in the structure and function of tetrameric sodium channels

2013-open-pore-navms

Claire Bagnéris; Paul G. DeCaen; Benjamin A. Hall; Claire E. Naylor; David E. Clapham; Christopher W. M. Kay; B. A. Wallace

2013-09-19 (online)

Nature Communications (Nat. Commun.). 4, doi:10.1038/ncomms3465

Description

Pore only open conformation. Supposed to have the CTD but rcsb pdb doesn't show it. Proposes CTD role in gating.

PDB codes

3zjz

nav structure

Inferring protein structure and dynamics from simulation and experiment

2013-beauchamp-thesis

Kyle Beauchamp

2013-09-01 (print)

Systematic Improvement of a Classical Molecular Model of Water

2013-tip3p-fb

Lee-Ping Wang; Teresa Head-Gordon; Jay W. Ponder; Pengyu Ren; John D. Chodera; Peter K. Eastman; Todd J. Martinez; Vijay S. Pande

2013-08-29 (print)

The Journal of Physical Chemistry B (J. Phys. Chem. B). 117, 34, 9956-9972. doi:10.1021/jp403802c

Description

Cited in 2015-wetmsm intro as example of better water models. Optimizes tip3p and tip4p parameters.

Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics

2013-mcgibbon-kdml

Robert T. McGibbon; Vijay S. Pande

2013-07-09 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 9, 7, 2900-2906. doi:10.1021/ct400132h

Description

Learn scaling of coordinates to better approximate kinetics? Redundant with tICA.

Identification of slow molecular order parameters for Markov model construction

2013-noe-tica

Guillermo Pérez-Hernández; Fabian Paul; Toni Giorgino; Gianni De Fabritiis; Frank Noé

2013-07-07 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 139, 1, 015102. doi:10.1063/1.4811489

Description

The Noe group introduces tica concomitantly with 2013-schwantes-tica. They use the variational approach from 2013-noe-variational to derive the tICA equation. They cite a 2001 book about independent component analysis.

msm-theory tica

Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9

2013-schwantes-tica

Christian R. Schwantes; Vijay S. Pande

2013-04-09 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 9, 4, 2000-2009. doi:10.1021/ct300878a

Description

The Pande group introduces tica concomitantly with 2013-noe-tica. This paper uses PCA as inspiration and cites signal processing literature.

msm-theory tica

Superconducting Circuits for Quantum Information: An Outlook

2013-superconducting-qubit-outlook

M. H. Devoret; R. J. Schoelkopf

2013-03-07 (online) – 2013-03-08 (print)

Science (Science). 339, 6124, 1169-1174. doi:10.1126/science.1231930

To milliseconds and beyond: challenges in the simulation of protein folding

2013-milliseconds-folding

Thomas J Lane; Diwakar Shukla; Kyle A Beauchamp; Vijay S Pande

2013-02-01 (print)

Current Opinion in Structural Biology (Curr. Opin. Struct. Biol.). 23, 1, 58-65. doi:10.1016/j.sbi.2012.11.002

Description

The state of folding simulations as it was in 2013. Has a nice plot of folding time by year by lab. Discusses the state of MSMs for analysis. Maybe cite this if you're doing folding or want to talk about how timescales are getting longer (and analysis is getting harder). The references include "recommended readings", which is nice.

msm-theory perspective

OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation

2013-openmm

Peter Eastman; Mark S. Friedrichs; John D. Chodera; Randall J. Radmer; Christopher M. Bruns; Joy P. Ku; Kyle A. Beauchamp; Thomas J. Lane; Lee-Ping Wang; Diwakar Shukla; Tony Tye; Mike Houston; Timo Stich; Christoph Klein; Michael R. Shirts; Vijay S. Pande

2013-01-08 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 9, 1, 461-469. doi:10.1021/ct300857j

software

Building Markov state models with solvent dynamics

gu_building_2013

Chen Gu; Huang-Wei Chang; Lutz Maibaum; Vijay S Pande; Gunnar E Carlsson; Leonidas J Guibas

2013-01-01 (print)

BMC Bioinformatics (BMC Bioinf.). 14, Suppl 2, S8. doi:10.1186/1471-2105-14-S2-S8

Description

2015-wetmsm method based off of this.

A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems

2013-noe-variational

Frank Noé; Feliks Nüske

2013-01-01 (print)

Multiscale Modeling & Simulation (Multiscale Model. Simul.). 11, 2, 635-655. doi:10.1137/110858616

Description

I think the point of this versus 2014-nuske-variational is to be "protein agnostic". They allude to proteins, but say this is more general. Their example is a double-well potential.

They introduce the propogator formalism and stipulate that dynamics can be seperated into "fast" and "slow" components. In contrast to a quantum mechanics Hamiltonian, we don't know the propogator here. You have to infer it from data.

They claim the error bound derived in 2010-msm-error (ref. 34) is not constructive, whereas this method *is* constructive.

Math section heavily cites 2010-msm-error (ref. 34).

They adapt the Rayleigh variational principle from quantum mechanics, and cite 1989-szabo-ostlund-qm (ref. 43). They show that the autocorrelation of the true first dynamical eigenfunction is its eigenvalue, and an estimate of the first dynamical eigenfunction necessarily has a smaller eigenvalue. This sets the variational bound. In terms of names that don't seem to be used now that we're in the future: the Ritz method is for when you have no overlap integrals (e.g. MSMs) and the Roothan-Hall method is for when you do (tICA).

They put it to the test on a double well potential. They use indicator basis functions to make an MSM; hermite basis functions so they still have no overlap integrals, but smooth functions; and gaussian basis functions (with overlap integrals). This must have come before tICA because there is no mention made of it, even though it would fit in nicely.

NumEntryWhy
34 2010-msm-error
34 2010-msm-error
43 1989-szabo-ostlund-qm

msm-theory variational

Kinetic characterization of the critical step in HIV-1 protease maturation

sadiq_kinetic_2012

S. K. Sadiq; F. Noe; G. De Fabritiis

2012-11-26 (online) – 2012-12-11 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 109, 50, 20449-20454. doi:10.1073/pnas.1210983109

Description

Cited by 2015-wetmsm as successful MSM application for kinase activation

Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing

2012-partially-open-pore-navms

Emily C. McCusker; Claire Bagnéris; Claire E. Naylor; Ambrose R. Cole; Nazzareno D'Avanzo; Colin G. Nichols; B.A. Wallace

2012-10-02 (online)

Nature Communications (Nat. Commun.). 3, 1102. doi:10.1038/ncomms2077

Description

Pore only partially open state. This may or may not collapse to the closed state in molecular dynamics.

PDB codes

4f4l

nav structure

A Meshless Discretization Method for Markov State Models Applied to Explicit Water Peptide Folding Simulations

2013-meshless-msm

Konstantin Fackeldey; Alexander Bujotzek; Marcus Weber

2012-09-27 (online) – 2013-01-01 (print)

Lecture Notes in Computational Science and Engineering (Lect. Notes Comput. Sci. Eng.). 141-154. doi:10.1007/978-3-642-32979-1_9

Description

Soften the hard clustering 2006-meshless-msm-thesis (ref. 37).

Cite Shepard's approach 1968-shepard-method (ref. 30) like 2006-meshless-msm-thesis does to introduce the softmax function as basis functions with softness parameter alpha. Note that this is not Shepard's method.

They frame everything in the context of lumping and PCCA+ and use ZIBgridfree to simulate trialanine faster than unbiased (100ns vs 10ns).

NumEntryWhy
37 2006-meshless-msm-thesis
30 1968-shepard-method

Distribution of Reciprocal of Interatomic Distances: A Fast Structural Metric

2012-drid

Ting Zhou; Amedeo Caflisch

2012-08-14 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 8, 8, 2930-2937. doi:10.1021/ct3003145

Description

A unique featurization that encodes each atom by the first ~3 moments of its distribution of 1/distance to every other atom. Cite this if you use this featurization.

features

Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding Revealed by Simulation and Experiment

voelz_slow_2012

Vincent A. Voelz; Marcus Jäger; Shuhuai Yao; Yujie Chen; Li Zhu; Steven A. Waldauer; Gregory R. Bowman; Mark Friedrichs; Olgica Bakajin; Lisa J. Lapidus; Shimon Weiss; Vijay S. Pande

2012-08-01 (print)

Journal of the American Chemical Society (JACS). 134, 30, 12565-12577. doi:10.1021/ja302528z

Description

Cited by 2015-wetmsm as successful MSM application for folding

EMMA: A Software Package for Markov Model Building and Analysis

2012-jemma

Martin Senne; Benjamin Trendelkamp-Schroer; Antonia S.J.S. Mey; Christof Schütte; Frank Noé

2012-07-10 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 8, 7, 2223-2238. doi:10.1021/ct300274u

Description

The previous, java version of EMMA. Look at 2015-pyemma instead.

software

Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel

2012-closed-navrh

Xu Zhang; Wenlin Ren; Paul DeCaen; Chuangye Yan; Xiao Tao; Lin Tang; Jingjing Wang; Kazuya Hasegawa; Takashi Kumasaka; Jianhua He; Jiawei Wang; David E. Clapham; Nieng Yan

2012-05-20 (online)

Nature (Nature). doi:10.1038/nature11054

Description

Pore and Voltage Sensing domains in a closed state.

PDB codes

4dxw

nav structure

Crystal structure of a voltage-gated sodium channel in two potentially inactivated states

2012-closed-asym-navab

Jian Payandeh; Tamer M. Gamal El-Din; Todd Scheuer; Ning Zheng; William A. Catterall

2012-05-20 (online)

Nature (Nature). doi:10.1038/nature11077

Description

Pore and Voltage Sensing domains in an asymmetric closed state. NavAb.

PDB codes

4ekw

nav structure

Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born

2012-amber

Andreas W. Götz; Mark J. Williamson; Dong Xu; Duncan Poole; Scott Le Grand; Ross C. Walker

2012-05-08 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 8, 5, 1542-1555. doi:10.1021/ct200909j

Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements

1999-ff99

Kyle A. Beauchamp; Yu-Shan Lin; Rhiju Das; Vijay S. Pande

2012-04-10 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 8, 4, 1409-1414. doi:10.1021/ct2007814

forcefield

Constant electric field simulations of the membrane potential illustrated with simple systems

2012-roux-efield

James Gumbart; Fatemeh Khalili-Araghi; Marcos Sotomayor; Benoît Roux

2012-02-01 (print)

Biochimica et Biophysica Acta (BBA) - Biomembranes (Biochimica et Biophysica Acta (BBA) - Biomembranes). 1818, 2, 294-302. doi:10.1016/j.bbamem.2011.09.030

Description

Constant electric field

Nyström method vs random fourier features: A theoretical and empirical comparison

2012-nystroem

Tianbao Yang; Yu-Feng Li; Mehrdad Mahdavi; Rong Jin; Zhi-Hua Zhou

2012-01-01 (print)

Advances in Neural Information Processing Systems (Advances in Neural Information Processing Systems). 476-484.

Estimating the Eigenvalue Error of Markov State Models

2012-eigenvalue-error

Natasa Djurdjevac; Marco Sarich; Christof Schütte

2012-01-01 (print)

Multiscale Modeling & Simulation (Multiscale Model. Simul.). 10, 1, 61-81. doi:10.1137/100798910

Structural basis for gating charge movement in the voltage sensor of a sodium channel

2012-vsd-mechanism

V. Yarov-Yarovoy; P. G. DeCaen; R. E. Westenbroek; C.-Y. Pan; T. Scheuer; D. Baker; W. A. Catterall

2011-12-12 (online) – 2012-01-10 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 109, 2, E93-E102. doi:10.1073/pnas.1118434109

Description

Homology modelling to resting, intermediate and activated states of voltage sensing domains. Disulfide locking experiments. Cites [doi:10.1073/pnas.0806486105] and [doi:10.1073/pnas.0912307106] and [doi:10.1073/pnas.1116449108]

nav

Markov State Model Reveals Folding and Functional Dynamics in Ultra-Long MD Trajectories

lane_markov_2011

Thomas J. Lane; Gregory R. Bowman; Kyle Beauchamp; Vincent A. Voelz; Vijay S. Pande

2011-11-16 (print)

Journal of the American Chemical Society (JACS). 133, 45, 18413-18419. doi:10.1021/ja207470h

Description

Cited by 2015-wetmsm as successful MSM application for folding

How Fast-Folding Proteins Fold

2011-larsen-folding

K. Lindorff-Larsen; S. Piana; R. O. Dror; D. E. Shaw

2011-10-27 (online) – 2011-10-28 (print)

Science (Science). 334, 6055, 517-520. doi:10.1126/science.1208351

Description

The authors simulated folding trajectories for 12 small proteins. The simulations were between 100 us and 1 ms. This paper was a considerable advance for the field, and more or less closed the book on molecular dynamics for folding.

simulations

MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale

2011-msmbuilder2

Kyle A. Beauchamp; Gregory R. Bowman; Thomas J. Lane; Lutz Maibaum; Imran S. Haque; Vijay S. Pande

2011-10-11 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 7, 10, 3412-3419. doi:10.1021/ct200463m

software

The pore structure and gating mechanism of K2P channels

piechotta2011pore

Paula L Piechotta; Markus Rapedius; Phillip J Stansfeld; Murali K Bollepalli; Gunter Erhlich; Isabelle Andres-Enguix; Hariolf Fritzenschaft; Niels Decher; Mark S P Sansom; Stephen J Tucker; Thomas Baukrowitz

2011-08-05 (online) – 2011-08-31 (print)

The EMBO Journal (EMBO J.). 30, 17, 3607-3619. doi:10.1038/emboj.2011.268

Computational Electrophysiology: The Molecular Dynamics of Ion Channel Permeation and Selectivity in Atomistic Detail

2011-kutzner-double-membrane

Carsten Kutzner; Helmut Grubmüller; Bert L. de Groot; Ulrich Zachariae

2011-08-01 (print)

Biophysical Journal (Biophys. J.). 101, 4, 809-817. doi:doi:10.1016/j.bpj.2011.06.010

Description

They introduce the double-membrane scheme for measuring ion conductance. They do it on a big ol' beta barrel.

Multiple modalities converge on a common gate to control K2Pchannel function

bagriantsev2011multiple

Sviatoslav N Bagriantsev; Rémi Peyronnet; Kimberly A Clark; Eric Honoré; Daniel L Minor

2011-07-15 (online) – 2011-08-31 (print)

The EMBO Journal (EMBO J.). 30, 17, 3594-3606. doi:10.1038/emboj.2011.230

The crystal structure of a voltage-gated sodium channel

2011-closed-navab

Jian Payandeh; Todd Scheuer; Ning Zheng; William A. Catterall

2011-07-10 (online)

Nature (Nature). 475, 7356, 353-358. doi:10.1038/nature10238

Description

Pore and Voltage Sensing domains in a closed state. First NaV Structure. Prokaryote NavAb

PDB codes

3rvy, 3rvz, 3rw0

nav structure

Soft Versus Hard Metastable Conformations in Molecular Simulations

2011-meshless-msm

Konstantin Fackeldey; Susanna Röblitz; Olga Scharkoi; Marcus Weber

2011-06-22 (online)

Description

They note MSM is a meshfree method with characteristic basis functions.

They define a "hard decomposition" in the obvious way. They define a "soft decomposition" also as a partitioning of unity, but allowing overlap.

They still do PCCA+ and it's unclear what shape function they're using for softness. As an example, they lump 504 soft states into 5 macrostates of alanine dipeptide, sometimes spelled alanin dipeptid

Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations

buch_complete_2011

I. Buch; T. Giorgino; G. De Fabritiis

2011-06-06 (online) – 2011-06-21 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 108, 25, 10184-10189. doi:10.1073/pnas.1103547108

Description

Cited by 2015-wetmsm as successful MSM application for protein-ligand binding

Cited by 2015-wetmsm where solvent is treated by grid of voxels.

Markov models of molecular kinetics: Generation and validation

2011-prinz

Jan-Hendrik Prinz; Hao Wu; Marco Sarich; Bettina Keller; Martin Senne; Martin Held; John D. Chodera; Christof Schütte; Frank Noé

2011-05-07 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 134, 17, 174105. doi:10.1063/1.3565032

Description

Fantastic in-depth intro to MSMs. Figure 1 in this paper is necessary for understanding eigenvectors. This defines and relates the propogator and transfer operator. This shows how we compute timescales from eigenvectors. This discusess state decomposition error and shows that many states are needed in transition regions.

quote: it is clear that a “sufficiently fine” partitioning will be able to resolve “sufficient” detail 2010-msm-error.

Cites 2004-nina-msm for use of the term "MSM".

msm-theory review

MDAnalysis: A toolkit for the analysis of molecular dynamics simulations

2011-mdanalysis

Naveen Michaud-Agrawal; Elizabeth J. Denning; Thomas B. Woolf; Oliver Beckstein

2011-04-15 (online) – 2011-07-30 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 32, 10, 2319-2327. doi:10.1002/jcc.21787

Determination of reaction coordinates via locally scaled diffusion map

2011-rohrdanz-diffusion-maps

Mary A. Rohrdanz; Wenwei Zheng; Mauro Maggioni; Cecilia Clementi

2011-03-28 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 134, 12, 124116. doi:10.1063/1.3569857

other-md-analysis

Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions

2011-japan-tica

Yusuke Naritomi; Sotaro Fuchigami

2011-02-14 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 134, 6, 065101. doi:10.1063/1.3554380

Description

Probably the first application of tICA to MD.

msm-theory tica

Protein kinases: evolution of dynamic regulatory proteins

2011-kinase-review

Susan S. Taylor; Alexandr P. Kornev

2011-02-01 (print)

Trends in Biochemical Sciences (Trends Biochem. Sci.). 36, 2, 65-77. doi:10.1016/j.tibs.2010.09.006

Description

Review of protein kinases. The MSMBuilder paper uses a kinase MD dataset as an example.

review

Scikit-learn: Machine Learning in Python

2011-sklearn

F. Pedregosa; G. Varoquaux; A. Gramfort; V. Michel; B. Thirion; O. Grisel; M. Blondel; P. Prettenhofer; R. Weiss; V. Dubourg; J. Vanderplas; A. Passos; D. Cournapeau; M. Brucher; M. Perrot; E. Duchesnay

2011-01-01 (print)

Journal of Machine Learning Research (J. Mach. Learn. Res.). 12, 2825-2830.

software python

Structural Inhomogeneity of Water by Complex Network Analysis

rao_structural_2010

Francesco Rao; Sean Garrett-Roe; Peter Hamm

2010-12-02 (print)

The Journal of Physical Chemistry B (J. Phys. Chem. B). 114, 47, 15598-15604. doi:10.1021/jp1060792

Description

prior work for water features. Contrast with 2015-wetmsm.

Simple Theory of Protein Folding Kinetics

2010-pande-folding

Vijay S. Pande

2010-11-05 (online)

Physical Review Letters (Phys. Rev. Lett.). 105, 19, doi:10.1103/PhysRevLett.105.198101

Description

Non-native interactions and misfolding

Atomic-Level Characterization of the Structural Dynamics of Proteins

2010-shaw-fip35-bpti

D. E. Shaw; P. Maragakis; K. Lindorff-Larsen; S. Piana; R. O. Dror; M. P. Eastwood; J. A. Bank; J. M. Jumper; J. K. Salmon; Y. Shan; W. Wriggers

2010-10-14 (online) – 2010-10-15 (print)

Science (Science). 330, 6002, 341-346. doi:10.1126/science.1187409

Description

Simulation of fip35 ww domain: 2x 100 us. Note this was at 400K so unfolding could be observed.

Simulation of bpti: 1ms. Note this was done with tip4p for reasons.

simulations

Challenges in protein-folding simulations

2010-schulten-challenges

Peter L. Freddolino; Christopher B. Harrison; Yanxin Liu; Klaus Schulten

2010-10-01 (online) – 2010-10-01 (print)

Nature Physics (Nat. Phys.). 6, 10, 751-758. doi:10.1038/nphys1713

Description

Cited by 2014-msm-perspective as highlighting analysis as a problem.

Everything you wanted to know about Markov State Models but were afraid to ask

2010-everything-msm-afraid-ask

Vijay S. Pande; Kyle Beauchamp; Gregory R. Bowman

2010-09-01 (print)

Methods (Methods). 52, 1, 99-105. doi:10.1016/j.ymeth.2010.06.002

Description

Review of MSMs intended for "non-experts". Obviously a little dated by now.

msm-theory review

Structural mechanism of C-type inactivation in K+ channels

cuello2010structural

Luis G. Cuello; Vishwanath Jogini; D. Marien Cortes; Eduardo Perozo

2010-07-08 (print)

Nature (Nature). 466, 7303, 203-208. doi:10.1038/nature09153

Domain Reorientation and Rotation of an Intracellular Assembly Regulate Conduction in Kir Potassium Channels

clarke2010domain

Oliver B. Clarke; Alessandro T. Caputo; Adam P. Hill; Jamie I. Vandenberg; Brian J. Smith; Jacqueline M. Gulbis

2010-06-01 (print)

Cell (Cell). 141, 6, 1018-1029. doi:10.1016/j.cell.2010.05.003

Molecular Background of Leak K+ Currents: Two-Pore Domain Potassium Channels

2010-k2p-review

P. Enyedi; G. Czirjak

2010-04-14 (online) – 2010-04-01 (print)

Physiological Reviews (Physiol. Rev.). 90, 2, 559-605. doi:10.1152/physrev.00029.2009

Description

Nice review of K2P two-pore potassium channels. They talk about the wide variety of regulatory stimuli

kchan

High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing

2010-gpugrid

I. Buch; M. J. Harvey; T. Giorgino; D. P. Anderson; G. De Fabritiis

2010-03-22 (print)

Journal of Chemical Information and Modeling (J. Chem. Inf. Model.). 50, 3, 397-403. doi:10.1021/ci900455r

Description

GPUGRID intro paper. Cite this alongside FAH. They (probably) did GPU distributed computing before FAH.

distributed-computing

Principles of conduction and hydrophobic gating in K+ channels

jensen2010principles

M. O. Jensen; D. W. Borhani; K. Lindorff-Larsen; P. Maragakis; V. Jogini; M. P. Eastwood; R. O. Dror; D. E. Shaw

2010-03-15 (online) – 2010-03-30 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 107, 13, 5833-5838. doi:10.1073/pnas.0911691107

Current Status of the AMOEBA Polarizable Force Field

2010-amoeba

Jay W. Ponder; Chuanjie Wu; Pengyu Ren; Vijay S. Pande; John D. Chodera; Michael J. Schnieders; Imran Haque; David L. Mobley; Daniel S. Lambrecht; Robert A. DiStasio; Martin Head-Gordon; Gary N. I. Clark; Margaret E. Johnson; Teresa Head-Gordon

2010-03-04 (print)

The Journal of Physical Chemistry B (J. Phys. Chem. B). 114, 8, 2549-2564. doi:10.1021/jp910674d

forcefield

Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models

2010-charmm27

Pär Bjelkmar; Per Larsson; Michel A. Cuendet; Berk Hess; Erik Lindahl

2010-02-09 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 6, 2, 459-466. doi:10.1021/ct900549r

forcefield

Web-scale k-means clustering

2010-minibatch-kmeans

D. Sculley

2010-01-01 (print)

Proceedings of the 19th international conference on World wide web - WWW '10 (Proceedings of the 19th international conference on World wide web - WWW '10). doi:10.1145/1772690.1772862

Description

Clustering algorithm from sklearn admired for its speed.

algorithm

On the Approximation Quality of Markov State Models

2010-msm-error

Marco Sarich; Frank Noé; Christof Schütte

2010-01-01 (print)

Multiscale Modeling & Simulation (Multiscale Model. Simul.). 8, 4, 1154-1177. doi:10.1137/090764049

msm-theory

'Plenty of room' revisited

2009-plenty-of-room-focus

2009-12-01 (print)

Nature Nanotechnology (Nat. Nanotechnol.). 4, 12, 781-781. doi:10.1038/nnano.2009.356

Description

Editorial about 1960-plenty-of-room-at-the-bottom.

Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations

2009-noe-equilibrium-from-short

F. Noe; C. Schutte; E. Vanden-Eijnden; L. Reich; T. R. Weikl

2009-11-03 (online) – 2009-11-10 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 106, 45, 19011-19016. doi:10.1073/pnas.0905466106

Using generalized ensemble simulations and Markov state models to identify conformational states

2009-msmbuilder1

Gregory R. Bowman; Xuhui Huang; Vijay S. Pande

2009-10-01 (print)

Methods (Methods). 49, 2, 197-201. doi:10.1016/j.ymeth.2009.04.013

Description

This introduced the first release of MSMBuilder. You probably shouldn't cite this unless you have a good reason to.

software python

Reactive flux and folding pathways in network models of coarse-grained protein dynamics

2009-berezhkovskii-reactive-flux

Alexander Berezhkovskii; Gerhard Hummer; Attila Szabo

2009-05-28 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 130, 20, 205102. doi:10.1063/1.3139063

Accelerating molecular dynamic simulation on graphics processing units

2009-friedrichs-gpu

Mark S. Friedrichs; Peter Eastman; Vishal Vaidyanathan; Mike Houston; Scott Legrand; Adam L. Beberg; Daniel L. Ensign; Christopher M. Bruns; Vijay S. Pande

2009-04-30 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 30, 6, 864-872. doi:10.1002/jcc.21209

Description

Probably the second instance of using GPUs for molecular dynamics. This became OpenMM.

md-sampling

Long-timescale molecular dynamics simulations of protein structure and function

2009-md-perspective

John L Klepeis; Kresten Lindorff-Larsen; Ron O Dror; David E Shaw

2009-04-01 (print)

Current Opinion in Structural Biology (Curr. Opin. Struct. Biol.). 19, 2, 120-127. doi:10.1016/j.sbi.2009.03.004

Two-P-Domain (K2P) Potassium Channels: Leak Conductance Regulators of Excitability

goldstein2001potassium

D. Thomas; S.A.N. Goldstein

2009-01-01 (print)

Encyclopedia of Neuroscience (Encyclopedia of Neuroscience). 1207-1220. doi:10.1016/b978-008045046-9.01636-3

Transition Path Theory for Markov Jump Processes

2009-metzner-tpt

Philipp Metzner; Christof Schütte; Eric Vanden-Eijnden

2009-01-01 (print)

Multiscale Modeling & Simulation (Multiscale Model. Simul.). 7, 3, 1192-1219. doi:10.1137/070699500

Description

Transition path theory (TPT).

msm-theory msm-postprocessing

Millisecond-scale molecular dynamics simulations on Anton

2009-anton

David E. Shaw; Kevin J. Bowers; Edmond Chow; Michael P. Eastwood; Douglas J. Ierardi; John L. Klepeis; Jeffrey S. Kuskin; Richard H. Larson; Kresten Lindorff-Larsen; Paul Maragakis; Mark A. Moraes; Ron O. Dror; Stefano Piana; Yibing Shan; Brian Towles; John K. Salmon; J. P. Grossman; Kenneth M. Mackenzie; Joseph A. Bank; Cliff Young; Martin M. Deneroff; Brannon Batson

2009-01-01 (print)

Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis - SC '09 (Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis - SC '09). doi:10.1145/1654059.1654126

Fast determination of the optimal rotational matrix for macromolecular superpositions

2009-theobald-rmsd

Pu Liu; Dimitris K. Agrafiotis; Douglas L. Theobald

2009-01-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). n/a-n/a. doi:10.1002/jcc.21439

Description

This one computes the optimal rotation in addition to (specifically: after) just computing the minimal RMSD value. It uses 2005-theobald-rmsd (ref. 14) for finding the optimal RMSD (ie leading eigenvalue of key matrix).

NumEntryWhy
14 2005-theobald-rmsd

Efficient nonbonded interactions for molecular dynamics on a graphics processing unit

2009-eastman-gpu

Peter Eastman; Vijay S. Pande

2009-01-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). NA-NA. doi:10.1002/jcc.21413

Description

Optimizing below-cutoff nonbonded calculations on the GPU by tricky memory and parallelization management. This was for OpenMM. This is not PME.

NumEntryWhy

md-sampling md-algorithm

The Membrane Potential and its Representation by a Constant Electric Field in Computer Simulations

2008-roux-efield

Benoît Roux

2008-11-01 (print)

Biophysical Journal (Biophys. J.). 95, 9, 4205-4216. doi:10.1529/biophysj.108.136499

Description

Constant electric field

Role of Water in Mediating the Assembly of Alzheimer Amyloid-β Aβ16−22 Protofilaments

krone_role_2008

Mary Griffin Krone; Lan Hua; Patricia Soto; Ruhong Zhou; B. J. Berne; Joan-Emma Shea

2008-08-01 (print)

Journal of the American Chemical Society (JACS). 130, 33, 11066-11072. doi:10.1021/ja8017303

Description

Cited by 2015-wetmsm where solvent is important for aggregation

Anton, a special-purpose machine for molecular dynamics simulation

2008-anton

David E. Shaw; Jack C. Chao; Michael P. Eastwood; Joseph Gagliardo; J. P. Grossman; C. Richard Ho; Douglas J. Lerardi; István Kolossváry; John L. Klepeis; Timothy Layman; Christine McLeavey; Martin M. Deneroff; Mark A. Moraes; Rolf Mueller; Edward C. Priest; Yibing Shan; Jochen Spengler; Michael Theobald; Brian Towles; Stanley C. Wang; Ron O. Dror; Jeffrey S. Kuskin; Richard H. Larson; John K. Salmon; Cliff Young; Brannon Batson; Kevin J. Bowers

2008-07-01 (print)

Communications of the ACM (Commun. ACM). 51, 7, 91. doi:10.1145/1364782.1364802

Description

The seminal Anton paper. Cite this when talking about single, long trajectories or special-purpose hardware.

md-sampling

The Protein Folding Problem

2008-protein-folding-problem

Ken A. Dill; S. Banu Ozkan; M. Scott Shell; Thomas R. Weikl

2008-06-01 (print)

Annual Review of Biophysics (Annu. Rev. Biophys.). 37, 1, 289-316. doi:10.1146/annurev.biophys.37.092707.153558

General purpose molecular dynamics simulations fully implemented on graphics processing units

2008-anderson-gpu

Joshua A. Anderson; Chris D. Lorenz; A. Travesset

2008-05-01 (print)

Journal of Computational Physics (J. Comput. Phys.). 227, 10, 5342-5359. doi:10.1016/j.jcp.2008.01.047

Description

They claim to be the first GPU accelerated MD engine too! Probably led to HOOMD, although they don't call it that in the paper.

md-sampling

Insights from the energetics of water binding at the domain-ligand interface of the Src SH2 domain

fabritiis_insights_2008

Gianni De Fabritiis; Sebastien Geroult; Peter V. Coveney; Gabriel Waksman

2008-04-02 (online)

Proteins: Structure, Function, and Bioinformatics (Proteins Struct. Funct. Bioinf.). 72, 4, 1290-1297. doi:10.1002/prot.22027

Description

Cited by 2015-wetmsm where solvent is treated by grid of voxels.

Limits on Variations in Protein Backbone Dynamics from Precise Measurements of Scalar Couplings

2007-scalar-coupling

Beat Vögeli; Jinfa Ying; Alexander Grishaev; Ad Bax

2007-08-01 (print)

Journal of the American Chemical Society (JACS). 129, 30, 9377-9385. doi:10.1021/ja070324o

Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding

young_motifs_2007

Tom Young; Robert Abel; Byungchan Kim; Bruce J. Berne; Richard A. Friesner

2007-01-04 (online) – 2007-01-16 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 104, 3, 808-813. doi:10.1073/pnas.0610202104

Description

Cited by 2015-wetmsm where water is important for protein-ligand binding

IPython: A System for Interactive Scientific Computing

2007-ipython

Fernando Perez; Brian E. Granger

2007-01-01 (print)

Computing in Science & Engineering (Comput. Sci. Eng.). 9, 3, 21-29. doi:10.1109/MCSE.2007.53

software python

Accelerating molecular modeling applications with graphics processors

2007-stone-gpu

John E. Stone; James C. Phillips; Peter L. Freddolino; David J. Hardy; Leonardo G. Trabuco; Klaus Schulten

2007-01-01 (online) – 2007-12-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 28, 16, 2618-2640. doi:10.1002/jcc.20829

Description

(Probably) the first GPU accelerated MD paper. This is for NAMD.

md-sampling

Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters

2006-bowers-cluster

Kevin Bowers; Edmond Chow; Huafeng Xu; Ron Dror; Michael Eastwood; Brent Gregersen; John Klepeis; Istvan Kolossvary; Mark Moraes; Federico Sacerdoti; John Salmon; Yibing Shan; David Shaw

2006-11-01 (print)

ACM/IEEE SC 2006 Conference (SC'06) (ACM/IEEE SC 2006 Conference (SC'06)). doi:10.1109/SC.2006.54

What Is the Relation Between Slow Feature Analysis and Independent Component Analysis?

doi:10.1162/neco.2006.18.10.2495

Tobias Blaschke; Pietro Berkes; Laurenz Wiskott

2006-10-01 (print)

Neural Computation (Neural Comput.). 18, 10, 2495-2508. doi:10.1162/neco.2006.18.10.2495

Effects of Solvent on the Structure of the Alzheimer Amyloid-β(25–35) Peptide

wei_effects_2006

Guanghong Wei; Joan-Emma Shea

2006-09-01 (print)

Biophysical Journal (Biophys. J.). 91, 5, 1638-1647. doi:10.1529/biophysj.105.079186

Description

Cited by 2015-wetmsm where solvent is important for aggregation

Diffusion maps, spectral clustering and reaction coordinates of dynamical systems

2006-nadler-diffusion-maps

Boaz Nadler; Stéphane Lafon; Ronald R. Coifman; Ioannis G. Kevrekidis

2006-07-01 (print)

Applied and Computational Harmonic Analysis (Appl. Comput. Harmon. Anal.). 21, 1, 113-127. doi:10.1016/j.acha.2005.07.004

other-md-analysis

Transition Networks for the Comprehensive Characterization of Complex Conformational Change in Proteins

2006-noe-conf-change

Frank Noé; Dieter Krachtus; Jeremy C. Smith; Stefan Fischer

2006-05-01 (print)

Journal of Chemical Theory and Computation (J. Chem. Theory Comput.). 2, 3, 840-857. doi:10.1021/ct050162r

conformational-change

Nanotube Confinement Denatures Protein Helices

sorin_nanotube_2006

Eric J. Sorin; Vijay S. Pande

2006-05-01 (print)

Journal of the American Chemical Society (JACS). 128, 19, 6316-6317. doi:10.1021/ja060917j

Description

Cited by 2015-wetmsm where water is important for protein stability

Using massively parallel simulation and Markovian models to study protein folding: Examining the dynamics of the villin headpiece

jayachandran_using_2006

Guha Jayachandran; V. Vishal; Vijay S. Pande

2006-04-28 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 124, 16, 164902. doi:10.1063/1.2186317

Description

Cited by 2015-wetmsm as successful MSM application for folding

Meshless Methods in Conformational Dynamics

2006-meshless-msm-thesis

Marcus Weber

2006-02-01 (print)

Description

Mainly concerned with lumping (PCCA) and setting up an iterative sampling scheme, released as ZIBgridfree.

Partition of unity using Shepard's method 1968-shepard-method (ref. 117). Definition 4.8 says these need to be positive (greater than zero) which rules out traditional MSMs. Why?

Highlights importants of softness parameter of the shape function, which they call alpha. They say Shepard's method with gaussian RBFs can be seen as a generalized Voronoi Tessellation.

NumEntryWhy
117 1968-shepard-method

A general purpose model for the condensed phases of water: TIP4P/2005

2005-tip4p

J. L. F. Abascal; C. Vega

2005-12-15 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 123, 23, 234505. doi:10.1063/1.2121687

forcefield

Rapid calculation of RMSDs using a quaternion-based characteristic polynomial

2005-theobald-rmsd

Douglas L. Theobald

2005-06-23 (online) – 2005-07-01 (print)

Acta Crystallographica Section A Foundations of Crystallography (Acta Crystallogr., Sect. A: Found. Crystallogr.). 61, 4, 478-480. doi:10.1107/S0108767305015266

Description

Instead of doing matrix diagonalization or inversion, use netwon-raphson root-finding on a characteristic polynomial.

Mainly builds off of 1987-horn-rmsd (ref. 5).

NumEntryWhy
5 1987-horn-rmsd

Structural mechanism of the recovery stroke in the Myosin molecular motor

2005-myosin-motor

S. Fischer; B. Windshugel; D. Horak; K. C. Holmes; J. C. Smith

2005-04-29 (online) – 2005-05-10 (print)

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 102, 19, 6873-6878. doi:10.1073/pnas.0408784102

conformational-change

Robust Perron cluster analysis in conformation dynamics

2005-pcca

Peter Deuflhard; Marcus Weber

2005-03-01 (print)

Linear Algebra and its Applications (Linear Algebra Appl.). 398, 161-184. doi:10.1016/j.laa.2004.10.026

Description

PCCA group states based on an MSM transition matrix. Specifically, it uses the eigenspectrum to do the lumping. Cite this in the methods section of your paper if you use PCCA or PCCA+.

msm-theory msm-postprocessing

Scalable molecular dynamics with NAMD

2005-namd

James C. Phillips; Rosemary Braun; Wei Wang; James Gumbart; Emad Tajkhorshid; Elizabeth Villa; Christophe Chipot; Robert D. Skeel; Laxmikant Kalé; Klaus Schulten

2005-01-01 (online) – 2005-12-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 26, 16, 1781-1802. doi:10.1002/jcc.20289

Hydrophobic Collapse in Multidomain Protein Folding

zhou_hydrophobic_2004

R. Zhou

2004-09-10 (print)

Science (Science). 305, 5690, 1605-1609. doi:10.1126/science.1101176

Description

Cited by 2015-wetmsm because model system for hydrophobic collapse

Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations

2004-charmm27

Alexander D. Mackerell; Michael Feig; Charles L. Brooks

2004-08-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 25, 11, 1400-1415. doi:10.1002/jcc.20065

forcefield

Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory†

2004-swope-msm

William C. Swope; Jed W. Pitera; Frank Suits

2004-05-01 (print)

The Journal of Physical Chemistry B (J. Phys. Chem. B). 108, 21, 6571-6581. doi:10.1021/jp037421y

Description

The first MSM paper. Gets pretty much everything right. Except they're convinced that you need to do state exploration via NVT or NPT and then calculate transitions by launching bespoke NVE simulations. Obviously, we just run big NPT runs and use that for both state space exploration and counting transitions.

msm-theory

Calculating potentials of mean force from steered molecular dynamics simulations

2004-pmf

Sanghyun Park; Klaus Schulten

2004-04-01 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 120, 13, 5946-5961. doi:10.1063/1.1651473

Using quaternions to calculate RMSD

2004-dill-rmsd

Evangelos A. Coutsias; Chaok Seok; Ken A. Dill

2004-01-01 (online) – 2004-11-30 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 25, 15, 1849-1857. doi:10.1002/jcc.20110

Description

Similar to 2005-theobald-rmsd, builds off of 1987-horn-rmsd (ref. 5). Proves identity with normal 3x3 methods.

Derives the derivative of RMSD wrt coordinates, although "it is well known"

NumEntryWhy
5 1987-horn-rmsd

Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin

2004-nina-msm

Nina Singhal; Christopher D. Snow; Vijay S. Pande

2004-01-01 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 121, 1, 415. doi:10.1063/1.1738647

Development and testing of a general amber force field

2004-gaff

Junmei Wang; Romain M. Wolf; James W. Caldwell; Peter A. Kollman; David A. Case

2004-01-01 (online) – 2004-07-15 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 25, 9, 1157-1174. doi:10.1002/jcc.20035

forcefield

Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm

2003-drude-particles

Guillaume Lamoureux; Benoı̂t Roux

2003-08-08 (print)

The Journal of Chemical Physics (J. Chem. Phys.). 119, 6, 3025-3039. doi:10.1063/1.1589749

forcefield

Topological quantum memory

2002-surface-code

Eric Dennis; Alexei Kitaev; Andrew Landahl; John Preskill

2002-09-01 (print)

Journal of Mathematical Physics (J. Math. Phys.). 43, 9, 4452-4505. doi:10.1063/1.1499754

Description

Called the seminal work in surface code error correction by 2017-fault-tolerant-computation, this long article seems to evaluate the details of the surface code which were introduced in 1997-kitaev-error-correction (ref. 4) and 1997-anyons (ref. 5).

NumEntryWhy
4 1997-kitaev-error-correction
5 1997-anyons

Hydrophobicity: Two faces of water

chandler_hydrophobicity_2002

David Chandler

2002-05-30 (print)

Nature (Nature). 417, 6888, 491-491. doi:10.1038/417491a

Description

Cited by 2015-wetmsm where water is important for hydrophobic collapse

Using the Nyström Method to Speed Up Kernel Machines

2001-nystroem

Christopher K. I. Williams; Matthias Seeger

2001-01-01 (print)

Advances in Neural Information Processing Systems (Advances in Neural Information Processing Systems). 13, 682-688.

Transfer Operator Approach to Conformational Dynamics in Biomolecular Systems

2001-schutte-variational

Ch. Schütte; W. Huisinga; P. Deuflhard

2001-01-01 (print)

Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems (Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems). 191-223. doi:10.1007/978-3-642-56589-2_9

Description

Full treatment of transfer operator / propagator and build an MSM for a small RNA chain.

msm-theory

COMPUTING: Screen Savers of the World Unite!

2000-fah

M. Shirts

2000-12-08 (print)

Science (Science). 290, 5498, 1903-1904. doi:10.1126/science.290.5498.1903

Description

The seminal Folding at Home paper. Cite this whenever you talk about distributed computing or Folding at Home.

SETI@Home and distributed.net came before this.

distributed-computing

Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains

2000-pcca

P. Deuflhard; W. Huisinga; A. Fischer; Ch. Schütte

2000-08-01 (print)

Linear Algebra and its Applications (Linear Algebra Appl.). 315, 1-3, 39-59. doi:10.1016/S0024-3795(00)00095-1

Human TREK2, a 2P Domain Mechano-sensitive K+Channel with Multiple Regulations by Polyunsaturated Fatty Acids, Lysophospholipids, and Gs, Gi, and GqProtein-coupled Receptors

lesage2000human

Florian Lesage; Cécile Terrenoire; Georges Romey; Michel Lazdunski

2000-07-03 (online) – 2000-09-15 (print)

Journal of Biological Chemistry (J. Biol. Chem.). 275, 37, 28398-28405. doi:10.1074/jbc.m002822200

Molecular Dynamics of the KcsA K+ Channel in a Bilayer Membrane

2000-roux-kcsa-md

Simon Bernèche; Benoît Roux

2000-06-01 (print)

Biophysical Journal (Biophys. J.). 78, 6, 2900-2917. doi:10.1016/S0006-3495(00)76831-7

Description

They run 4ns of MD on KcsA potassium channel.

A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo

1999-schutte-msm

Ch Schütte; A Fischer; W Huisinga; P Deuflhard

1999-05-01 (print)

Journal of Computational Physics (J. Comput. Phys.). 151, 1, 146-168. doi:10.1006/jcph.1999.6231

Description

Maybe the first time conformations were discretized and a Markov operator was made.

Nonlinear Component Analysis as a Kernel Eigenvalue Problem

1998-scholkopf-kernel-pca

Bernhard Schölkopf; Alexander Smola; Klaus-Robert Müller

1998-07-01 (print)

Neural Computation (Neural Comput.). 10, 5, 1299-1319. doi:10.1162/089976698300017467

Fault-tolerant quantum computation by anyons

1997-anyons

A. Yu. Kitaev

1997-07-09 (online)

arxiv:quant-ph/9707021

Stabilizer Codes and Quantum Error Correction

1997-gottesman-thesis

Daniel Gottesman

1997-05-28 (online)

arxiv:quant-ph/9705052

Quantum Error Correction with Imperfect Gates

1997-kitaev-error-correction

A. Yu. Kitaev

1997-01-01 (print)

Quantum Communication, Computing, and Measurement (Quantum Communication, Computing, and Measurement). 181-188. doi:10.1007/978-1-4615-5923-8_19

VMD: Visual molecular dynamics

1996-vmd

William Humphrey; Andrew Dalke; Klaus Schulten

1996-02-01 (print)

Journal of Molecular Graphics (J. Mol. Graph.). 14, 1, 33-38. doi:10.1016/0263-7855(96)00018-5

Description

The only game in town for making movies.

software

Three-dimensional Structures of Free Form and Two Substrate Complexes of an Extradiol Ring-cleavage Type Dioxygenase, the BphC Enzyme fromPseudomonassp. Strain KKS102

1996-bphc-structure

Toshiya Senda; Kazuyuki Sugiyama; Hiroki Narita; Takeshi Yamamoto; Kazuhide Kimbara; Masao Fukuda; Mitsuo Sato; Keiji Yano; Yukio Mitsui

1996-02-01 (print)

Journal of Molecular Biology (J. Mol. Biol.). 255, 5, 735-752. doi:10.1006/jmbi.1996.0060

PDB codes

1dhy, 1gdg

Knowledge-based protein secondary structure assignment

1995-stride

Dmitrij Frishman; Patrick Argos

1995-12-01 (print)

Proteins: Structure, Function, and Genetics (Proteins: Structure, Function, and Genetics). 23, 4, 566-579. doi:10.1002/prot.340230412

Description

VMD wants you to cite this for secondary structure prediction

software

Cα-based torsion angles: A simple tool to analyze protein conformational changes

1995-alpha-carbon

Maria M. Flocco; Sherry L. Mowbray

1995-10-01 (print)

Protein Science (Protein Sci.). 4, 10, 2118-2122. doi:10.1002/pro.5560041017

Description

Alpha carbon featurization

features

Fast Parallel Algorithms for Short-Range Molecular Dynamics

1995-plimpton

Steve Plimpton

1995-03-01 (print)

Journal of Computational Physics (J. Comput. Phys.). 117, 1, 1-19. doi:10.1006/jcph.1995.1039

Separation of a mixture of independent signals using time delayed correlations

doi:10.1103/PhysRevLett.72.3634

L. Molgedey; H. G. Schuster

1994-06-06 (online)

Physical Review Letters (Phys. Rev. Lett.). 72, 23, 3634-3637. doi:10.1103/PhysRevLett.72.3634

THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method

1992-wham

Shankar Kumar; John M. Rosenberg; Djamal Bouzida; Robert H. Swendsen; Peter A. Kollman

1992-10-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 13, 8, 1011-1021. doi:10.1002/jcc.540130812

Description

Wham reweighting algorithm, perhaps used after umbrella sampling.

algorithm md-algorithm

The energy landscapes and motions of proteins

1991-complex-protein-energy-landscapes

H Frauenfelder; S. Sligar; P. Wolynes

1991-12-13 (print)

Science (Science). 254, 5038, 1598-1603. doi:10.1126/science.1749933

Description

Cited by 2011-prinz to say that there are many metastable states and many timescales.

Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxy-terminal region

hoshi1991two

Toshinori Hoshi; William N. Zagotta; Richard W. Aldrich

1991-10-01 (print)

Neuron (Neuron). 7, 4, 547-556. doi:10.1016/0896-6273(91)90367-9

On the orthogonal transformation used for structural comparisons

1989-kearsley-rmsd

S. K. Kearsley

1989-02-01 (print)

Acta Crystallographica Section A Foundations of Crystallography (Acta Crystallogr., Sect. A: Found. Crystallogr.). 45, 2, 208-210. doi:10.1107/S0108767388010128

Description

2005-theobald-rmsd cites for quaternion RMSD

Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory

1989-szabo-ostlund-qm

Attila Szabo; Neil S. Ostlund

1989-01-01 (print)

Description

Cited by 2013-noe-variational for Rayleigh variational method.

qm

Computer Simulation of Liquids

1989-computer-simulation-of-liquids

M. P. Allen; D. J. Tildesley

1989-01-01 (print)

A note on the rotational superposition problem

1988-diamond-rmsd

R. Diamond

1988-03-01 (print)

Acta Crystallographica Section A Foundations of Crystallography (Acta Crystallogr., Sect. A: Found. Crystallogr.). 44, 2, 211-216. doi:10.1107/S0108767387010535

Description

2005-theobald-rmsd cites for quaternion RMSD

An efficient newton-like method for molecular mechanics energy minimization of large molecules

1987-minimization

Jay W. Ponder; Frederic M. Richards

1987-10-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 8, 7, 1016-1024. doi:10.1002/jcc.540080710

Closed-form solution of absolute orientation using unit quaternions

1987-horn-rmsd

Berthold K. P. Horn

1987-04-01 (online) – 1987-04-01 (print)

Journal of the Optical Society of America A (J. Opt. Soc. Amer. A). 4, 4, 629. doi:10.1364/JOSAA.4.000629

Description

2005-theobald-rmsd cites for quaternion RMSD

Measurements of Macroscopic Quantum Tunneling out of the Zero-Voltage State of a Current-Biased Josephson Junction

1985-macroscopic-quantum-tunneling

Michel H. Devoret; John M. Martinis; John Clarke

1985-10-28 (online)

Physical Review Letters (Phys. Rev. Lett.). 55, 18, 1908-1911. doi:10.1103/PhysRevLett.55.1908

Hydrogen bonding in globular proteins

1984-baker-hubbard

E.N. Baker; R.E. Hubbard

1984-01-01 (print)

Progress in Biophysics and Molecular Biology (Prog. Biophys. Mol. Biol.). 44, 2, 97-179. doi:10.1016/0079-6107(84)90007-5

Description

Hydrogen bond determination

CHARMM: A program for macromolecular energy, minimization, and dynamics calculations

1983-charmm

Bernard R. Brooks; Robert E. Bruccoleri; Barry D. Olafson; David J. States; S. Swaminathan; Martin Karplus

1983-01-01 (print)

Journal of Computational Chemistry (J. Comput. Chem.). 4, 2, 187-217. doi:10.1002/jcc.540040211

A solution for the best rotation to relate two sets of vectors

1978-kabsch-rmsd

W. Kabsch

1976-09-01 (print)

Acta Crystallographica Section A (Acta Crystallogr. A). 32, 5, 922-923. doi:10.1107/S0567739476001873

Description

2005-theobald-rmsd says this suffers from rotoinversions because it uses 3x3 rotations instead of 4x4 quaternions.

Environment and exposure to solvent of protein atoms. Lysozyme and insulin

1973-shrake-rupley

A. Shrake; J.A. Rupley

1973-09-01 (print)

Journal of Molecular Biology (J. Mol. Biol.). 79, 2, 351-371. doi:10.1016/0022-2836(73)90011-9

Description

Solvation

ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB

maier2015ff14sb

James A Maier; Carmenza Martinez; Koushik Kasavajhala; Lauren Wickstrom; Kevin E Hauser; Carlos Simmerling

Journal of chemical theory and computation (J. Chem. Theory Comput.). 11, 3696-3713.

Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov Models

2014-mcgibbon-hmm

Robert McGibbon; Bharath Ramsundar; Mohammad Sultan; Gert Kiss; Vijay Pande

32, 2, 1197-1205.

Description

Use hidden markov models instead of discrete state MSMs.

UCSF Chimera-a visualization system for exploratory research and analysis

pettersen2004ucsf

Eric F Pettersen; Thomas D Goddard; Conrad C Huang; Gregory S Couch; Daniel M Greenblatt; Elaine C Meng; Thomas E Ferrin

Journal of computational chemistry (J. Comput. Chem.). 25, 1605-1612.

Stochastic Processes in Physics and Chemistry

2987-van-kampen-book

N G Van-Kampen

Steered molecular dynamics

izrailev1999steered

Sergei Izrailev; Sergey Stepaniants; Barry Isralewitz; Dorina Kosztin; Hui Lu; Ferenc Molnar; Willy Wriggers; Klaus Schulten

39-65.

Description

2015-wetmsm cited this for methods: steered MD

Protein kinases: evolution of dynamic regulatory proteins

taylor2011protein

Susan S Taylor; Alexandr P Kornev

Trends Biochem. Sci. (Trends Biochem. Sci.). 36, 65-77.

Description

Cited in 2015-wetmsm intro.

Particle mesh Ewald: An Nlog (N) method for Ewald sums in large systems

darden1993particle

T. Darden; D. York; L. Pedersen

J. Chem. Phys. (J. Chem. Phys.). 98, 10089.

Description

2015-wetmsm cited this for methods: pme

Levinthal's paradox

1992-levinthal-paradox

R. Zwanzig; A. Szabo; B. Bagchi

Proceedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. U.S.A.). 89, 1, 20-22.

Description

Conformational space is huge, but proteins can fold very fast.

Large conformational changes in proteins: signaling and other functions

grant2010large

Barry J Grant; Alemayehu A Gorfe; J Andrew McCammon

Curr. Opin. Struc. Bio. (Curr. Opin. Struc. Bio.). 20, 142-147.

Description

Cited in 2015-wetmsm intro.

Landmark Kernel tICA For Conformational Dynamics

2017-lktica

Matthew P Harrigan; Vijay S Pande

bioRxiv (bioRxiv).

LINCS: a linear constraint solver for molecular simulations

hess1997lincs

B. Hess; H. Bekker; H.J.C. Berendsen; J.G.E.M. Fraaije

J. Comp. Chem. (J. Comp. Chem.). 18, 1463-1472.

Description

2015-wetmsm cited this for methods: lincs

Improved side-chain torsion potentials for the Amber ff99SB protein force field

lindorff2010improved

Kresten Lindorff-Larsen; Stefano Piana; Kim Palmo; Paul Maragakis; John L Klepeis; Ron O Dror; David E Shaw

Proteins: Struct., Funct., and Bioinf. (Proteins: Struct., Funct., and Bioinf.). 78, 1950-1958.

Description

2015-wetmsm cited this for methods: amber99sb-ildn

GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation

hess2008gromacs

B. Hess; C. Kutzner; D. van der Spoel; E. Lindahl

J. Chem. Theory Comput. (J. Chem. Theory Comput.). 4, 435-447.

Description

2015-wetmsm cited this for methods: gromacs

Dynamic personalities of proteins

henzler2007dynamic

Katherine Henzler-Wildman; Dorothee Kern

Nature (Nature). 450, 964-972.

Description

Cited in 2015-wetmsm intro.

Complex pathways in folding of protein G explored by simulation and experiment

lapidus2014complex

Lisa J Lapidus; Srabasti Acharya; Christian R Schwantes; Ling Wu; Diwakar Shukla; Michael King; Stephen J DeCamp; Vijay S Pande

Biophys. J. (Biophys. J.). 107, 947-955.

Description

Cited by 2015-wetmsm where they discard water.

Comparison of simple potential functions for simulating liquid water

jorgensen1983comparison

W.L. Jorgensen; J. Chandrasekhar; J.D. Madura; R.W. Impey; M.L. Klein

J. Chem. Phys. (J. Chem. Phys.). 79, 926.

Description

2015-wetmsm cited this for methods: tip3p.

An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation

2014-msm-book

G. R. Bowman; V. S. Pande; F. Noé

797,

Amber 14

case2014amber

DA Case; V Babin; Josh Berryman; RM Betz; Q Cai; DS Cerutti; TE Cheatham Iii; TA Darden; RE Duke; H Gohlke

A Fast 3 x N Matrix Multiply Routine for Calculation of Protein RMSD

2014-haque-fast-rmsd

Imran S Haque; Kyle A Beauchamp; Vijay S Pande

bioRxiv (bioRxiv).

1968-levinthal-paradox

C Levinthal

1968-01-01 (print)

(J. Chim. Phys. Physico-Chim. Biol.). 65, 44-45.

Description

Taken from Nature's protein folding focus

Among the most widely cited-yet least read-papers in the field, partly owing to the difficulties in getting hold of them, Cyrus Levinthal used a simple model to show that a typical polypeptide chain cannot fold through an unbiased search of all conformational space on a reasonable timescale. This is commonly referred to as the "Levinthal's paradox", and led to the concept that proteins fold along discrete pathways. The first paper presents this idea and is usually cited, but the model is actually presented in the second one. Although the model was later shown to be overly simplistic, the work had a crucial role in directing the search and characterization of intermediate states.

A two-dimensional interpolation function for irregularly-spaced data

1968-shepard-method

Donald Shepard

1968-01-01 (print)

Proceedings of the 1968 23rd ACM national conference on - (Proceedings of the 1968 23rd ACM national conference on -). doi:10.1145/800186.810616

Description

Method for interpolation confusingly cited by 2006-meshless-msm-thesis. I guess he introduces weightedsum(inverse distances) / sum(inverse distances). And instead of inverse distances, you can choose whatever function you want.

There's Plenty of Room at the Bottom

1960-plenty-of-room-at-the-bottom

Richard Feynman

1960-02-01 (print)

Engineering and Science (Engineering and Science). 23, 5, 22-36.

The potassium permeability of a giant nerve fibre

hodgkin1955potassium

A. L. Hodgkin; R. D. Keynes

1955-04-28 (online) – 1955-04-28 (print)

The Journal of Physiology (J. Physiol. (Lond.)). 128, 1, 61-88. doi:10.1113/jphysiol.1955.sp005291


Items